²HONGSEOP BAE, ¹JOHN HAUPTMAN, ²CHANGGI HUH, ²BOBAE KIM, ²JUNGHYUN LEE, ²SEHWOOK LEE, ²SANGIL PARK, ²RYONGHAE YE **1IOWA STATE UNIVERSITY,** ²KYUNGPOOK NATIONAL UNIVERSITY

DARKNESS ON THE TABLE, BUSAN, AUGUST 09, 2021

Search for Elementary Magnetic Monopoles in Electron-Positron Annihilation at Rest

Ν

K * M KoreA Experiment on Magnetic Monopole 150 vears mysterv

Photograph courtesy CERN

Maxwell's Equations in 1865

No evidence for magnetic monopoles

$\nabla \cdot \mathbf{E} = \rho_e$

$\nabla \cdot \mathbf{B} = 0$

Electromagnetic force law: $\mathbf{F} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

 $-\nabla \times \mathbf{E} = \partial \mathbf{B} / \partial t$

 $\nabla \times \mathbf{B} = \partial \mathbf{E} / \partial t + \mathbf{j}_e$

Maxwell's Equations with a Magnetic Monopole

Beautiful Symmetry of Maxwell's Equations

 $\nabla \cdot \mathbf{E} = \rho_e$

 $\nabla \cdot \mathbf{B} = \rho_m$

$-\nabla \times \mathbf{E} = \partial \mathbf{B} / \partial t + \mathbf{j}_m$

$\nabla \times \mathbf{B} = \partial \mathbf{E} / \partial t + \mathbf{j}_e$

Electromagnetic force law: $\mathbf{F} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + g(\mathbf{B} - (\mathbf{v}/c^2) \times \mathbf{E})$

Dirac Monopoles (1931)

$$eg = n\hbar c/2 \rightarrow g = ne/2\alpha \approx 68.5e$$

- 1. Time Projection Chamber (PEP, TRISTAN, PETRA, LEP) **2. Drift Chamber (DO and CDF)**
- **3. All LHC detectors including MoEDAL**
- 4. Moon rocks, IR Material, Cosmic rays

Dirac's quantization condition for electric (e) and magnetic (g) charges

Zero evidence of any particle with this large charge in

Other theories

Theoretical arguments for the existence of magnetic charges

- George Lochak [quant-ph/0801.2752]
 - Another solution for the Dirac system of electron-monopole
 - Contrary to other theories, our monopole is <u>light, fermionic and interacting</u> <u>electromagnetically and weakly</u>
- D. Fryberger, M. Sullivan[hep-ex/1707.05295]
 - Proposed <u>a magnetic charged particle with</u> magnetic charge <u>g=e</u>
- <u>Milli-charged particle</u> [hep-ph/0001179v2], <u>milli-magnetic particle</u> [Phys. Rev. D 96 (2017) 05510]

Theoretical arguments against the existence of magnetic charges

- K. McDonald [http://kirkmcd.princeton.edu/examples/comay.pdf]
 - Comay's paradox: magnetic charges are incompatible with classical electrodynamics
- K. Milton [Rep. Prog. Phys. 69 (2006) 1637-1712]
 - There is <u>no classical Hamiltonian theory of</u> <u>magnetic charge</u>

The Symmetry of E and B in Maxwell's Equations

$m_m \le m_e$

A huge charge (~68.5e) and huge mass (>>1 TeV/c²) of a magnetic monopole may be unreasonable since they are physically incompatible with the charge and mass of an electron.

Masses of Fermions (Matter Particles)

7 orders of magnitude

Could magnetic monopoles, SUSY particles, axions, skyrmions, dyons, dilations, and other particles exist in this mass region?

Our Exploring Area

Magnetic Monopole Production

Coupling strength (or production probability) $\alpha_{m^+m^-} = \frac{g^-}{4\pi\epsilon_0\hbar c}$ /137

$$\alpha = e^2/4\pi\epsilon_0\hbar c \approx 1/2$$

- For small magnetic charge, g < e → small energy transfer in ionization energy loss

$$\gamma^* \to m^+ m^-$$

$$(\rightarrow m^+m^-) = \frac{4\pi}{3} \frac{\alpha \alpha_{m^+m^-}}{s} \sqrt{\frac{1 - 4m_m^2/s}{1 - 4m_e^2/s}} (1 + 2m_e^2/s)(1 + 2m_e^$$

• small radiation energy losses

small magnetic Cerenkov light generation

→ the design of new detectors

Detection Methods

1. Electroluminescence (EL) TPC (Ar or Xe) 2. Wide-gap EL detector

4. Hyper-EM low-mass particles: - Plastic Scintillator

 $(m/m_e)^2$ $X_0 \approx (2 \text{ cm}) \times \frac{1}{2}$ $(q/e)^4$

3. Magnetic Cerenkov Light

5. Electromagnetic Calorimeter - LYSO, LaBr₃:Ce, CeBr₃, ... - total absorption at the far downstream end

- 6. Other ideas...
- NV Center
- Magnon

- Main idea for experimental design
- Magnetic charges m⁺m⁻ will be accelerated in opposites directions in a magnetic field by F=gB

 $\Delta E = qB\ell$ the obtained energy of magnetic monopoles

 $\Delta E = 68.5e \times (1T \times c) \times 1 \text{ meter} \approx 20.5 \text{ GeV}$

 $\Delta E = (300 \text{ MeV}) \times q/e$

Magnetic Acceleration

- the signature of monopole
 - Main background: two 511 keV photons

KoreA Experiment on Magnetic Monopole

gn KaeM (KoreA Experiment on Magnetic Monopole)

Vacuum chamber

1 T·m solenoids Length: 1 m, Bore: 20 cm

Electron-Positron Annihilation near Rest

Trigger-veto (2×2×12 cm³, 76)

GEANT 4 Simulations

Magnetic Mirror for the e+ Annihilation Target

Determination of target size

C	_ trapped positron	
^C Trapped by magnetic mirr	total positron	
$\epsilon_{\text{Geometrical acceptance}} =$	detected number of photon pair	
	total number of photon pair	

	Number of event	Exclusive efficiency	Cumulated efficiency
Generate	1000000	100%	100%
e⁺ emission from ²² Na decay	903814	90.38%	90.38%
Trapped by magnetic mirror	448693	49.64%	44.87%
Geometric acceptance	7927	1.77%	0.79%

- (steep gradient of magnetic field between solenoids using μ -metal or permanent magnet)

Backgrounds

- Source related:
 - Backward Compton scattering in the e⁺ target-source [e⁻: slow, too low energy] to crystal detectors [e⁻: slow and late, poor energy balance] - Mismeasurements of energy or time from the crystal detector waveforms - Double simultaneous decays and e⁺ annihilations
- Cosmic related:

 - Electromagnetic: the EM shower at random (whatever) incoming zenith angle
 - above the detector
 - Muonic: ultra high-energy muons
 - Muonic: random muons hitting detectors
- Internal background of LYSO crystal - ¹⁷⁶Lu decay: β: 182 keV, 593 keV, γ: 88 keV, 202 keV, 307 keV

- One or both γs from e⁺e⁻ annihilation hit vacuum chamber, Compton scattered electrons go in

- Electromagnetic: a local EM shower in the roof initiated by a high energy cosmic electron - Muonic: multi-muons resulted from a hadron-initiated event several nuclear absorption lengths

Ongoing Simulations

- Background studies - Double ²²Na decay - Cosmic muons + ²²Na decay - ¹⁷⁶Lu+²²Na decays
- Target thickness optimization for Hyper-EM - A low-mass magnetic charge (m/me=0.01e, g/e≈1) may be highly radiative - This particle may not come out from a target - We need a very thin target (for example, less than 10 μ m for Al target (X₀ \approx 9 μ m)

$$X_m = \left[\frac{4}{3\pi}\frac{\rho}{A}Z^2\frac{\alpha K}{mc^2}\left[\frac{(g/e)^2}{m/m_e}\right]^2\ln(\frac{233\gamma(m/m_e)}{Z^{1/3}})\right]^{-1}$$

$$X_m = \frac{(m/m_e)^2}{(g/e)^4} X_0$$

The effective radiation length for a magnetic charge

- Unexplored world for magnetic monopole search (low mass and low charge)
- Many interesting ideas to detect magnetic monopoles
- Ongoing studies
 - magnetic mirror and target design
 - steeper B-field gradient, target thickness optimization
 - customized electronics for DAQ in production
 - KRTech is building two solenoids $(1 \text{ T} \cdot \text{m})$
 - background studies with GEANT 4
 - NV Center

- beam test with the trigger-veto when electronics is ready
- EL TPC design and will start production

Classical Electromagnetism We are working to seek its completion

S

Photograph courtesy CERN

Spares

Magnetic Mirror

 e^+ energy is constant.

Figure 1: Magnetic bottle. When the particle making cyclotron orbits veers to the right, the Lorentz force has a component to the left due to the negative radial component of B. The e^+ will oscillate back and forth between the mirrors. Note that "adiabatic invariance" means that the number of flux lines ("Webers") threading the orbit remains constant. The

Magnetic Monopole Production

Cross section

$$\sigma(e^+e^- \to m^+m^-) = \frac{4\pi}{3} \frac{\alpha \alpha_{m^+m^-}}{s} \sqrt{\frac{1 - 4m_m^2/s}{1 - 4m_e^2/s}} (1 + 2m_e^2/s)(1 + 2m_e^2/s)($$

Loss cone inefficiency of magnetic mirror: 50.36%

Geometric acceptance: 1.77%

Energy measurement discrimination for g=0.01e: about 10 σ

- LYSO: energy resolution 8% at 511 keV
- main background: $e^+e^- \rightarrow \gamma \gamma$ -

LYSO Calibration

Mean value of fit function in full peak \approx 662 keV

LYSO Calibration

• Single ECAL LYSO 662 keV gamma photoelectron number distribution

• Single Trigger Veto LYSO 662 keV gamma photoelectron number distribution

LYSO Calibration

Backgrounds (double ²²Na decay)

Trigger-Veto

Backgrounds (Cosmic muons + ²²Na decay)

