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From this, one can see that the interaction between photon and electron 
involves the γ-matrix and the coupling constant.  The Feynman rule of the 
QED vertex is then given by 
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where the solid and wiggly lines denote electron and photon, respectively, 
and the dimensionless coupling constant eg  is related to the charge of the 
positron by 
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For the external electron lines, the plane wave solutions are used and the 
rules are given by 
 
  
  

(5.110) 
     
 
 
For the positron, the directions of arrows are opposite to the case of electron 
and the rules for the external positron lines are given by 
                   

           (5.111) 
 

,                            e
µµ γγ igige =→

incoming electron: 
 
outgoing electron: 

u;

u;

incoming positron: 
 
outgoing positron: 

v;

v;
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where ρ  and J
!

 are the charge and current densities, respectively.  Using 
the four vector notations for the current and the electromagnetic fields, one 
can reduce Eqs. (5.88) and (5.89) as 
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Likewise, Eqs. (5.90) and (5.91) can be reduced to 
 

,0=∂ αβµ
µναβε F                           (5.95) 

 
where µναβε  is +1 for ),,,,( βανµ an even permutation of (0, 1, 2, 3),  -1 
for an odd permutation and  0 if two or more indices are the same.  In terms 
of the four-vector potential, ),( AA

!
Φ=µ , the field strength tensor µνF is 

given by   
 

.µνµµ AAF vv ∂−∂=              (5.96) 
 
Here, we note that µνF  is invariant under the following transformation 
 

).()()()( xXxAxAxA µµµµ ∂+=ʹ→            (5.97) 
 

where X(x) is any scalar field.  The transformation in Eq. (5.97) is known as 
the (local) gauge transformation.  Under the gauge transformation, µνF  is 
invariant and so do the Maxwell’s equations (Eqs. (5.92) and (5.95)).  Even 
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Finally, using γ5 and other γ-matrices, one can consider the following bilinear 
products of spinors, 
 

(scalar)      )()( xx ψψ              (5.76) 
 

lar)(pseudosca      )()( 5 xx ψγψ            (5.77) 
 

(vector)      )()( xx ψγψ µ             (5.78) 
 

 vector)(axial      )()( 5 xx ψγγψ µ            (5.79) 
 

  )()( xx vψσψ µ (antisymmetric tensor)                        (5.80) 
 
where the adjoint spinor )(xψ  is given by 
 

    

€ 

ψ ( x) =ψ +(x)γ 0.             (5.81) 
 
It is not difficult to show that Eq. (5.76) is invariant under any 
transformation matrix, regardless whether it is continuous or discrete 
transformation.  As an example, Sr is unitary and does not involve 0γ so that 
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The proof for the boost operation is given in Appendix E.  However, the 
pseudoscalar product given by Eq. (5.77) satisfies the transformation rule 
differently for the continuous and discrete operations.  Under Sbr, Eq. (5.77) 
satisfies 
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Thus, in order for the invariant amplitude given by Eq. (5.118) to be 
invariant under the gauge transformation, one has to show that 
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regardless of the function χ~ .  This means that 
 

0)())(( 1122 =/−/ pupppu                       (5.122) 
 
to show the gauge invariance.  In fact, one can easily see that Eq. (5.122) is 
satisfied because of the free Dirac equation, i.e. 
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and  
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Note also that this implies the conservation of the vector current µJ  given 
by 

)()( 12 pupuJ µµ γ=            (5.126) 
 

because the current conservation in the coordinate space is given by 
 

0=∂ µ
µ J             (5.127) 

 
and expressed in the momentum space by 
 

The invariance under local gauge transformation leads to the current conservation. 
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Quantum Chromodynamics – SU(3) Theory

      

Invariance of the Lagrangian under Local SU(3) Gauge Transformation

with any unitary (3 x 3) matrix U(x).

U(x) can be given by a linear combination of 
! !8 Gell-Mann matrices   ...     [SU(3) group generators]

requires interaction fields – 8 gluons corresponding to these matrices

Lagrangian is constructed with quark wave functions 
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strong interactions.  While the nature of the strong interactions is still under 
investigation in order to explain the confinement mechanism of colored 
quarks and gluons, one can use the asymptotic freedom to discuss the 
behavior of the strong interaction potential at large momentum transfer or at 
the short distance.  We will discuss some aspect of the confining potential in 
the next section using the lattice QCD method.  In this section, however, 
let’s consider the lowest order QCD diagram to generate the asymptotic free 
potential as shown in Fig. 6.13. 
 

 
 

Fig. 6.13 : The lowest order QCD Feynman Diagram for the interaction between two 
quarks u and d. 
 
 
The invariant amplitude for the diagram in Fig. 6.13 is given by 
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Chapter 6 Quantum Chromodynamics 

Pedestrian Approach to Particle Physics 167 

strong interactions.  While the nature of the strong interactions is still under 
investigation in order to explain the confinement mechanism of colored 
quarks and gluons, one can use the asymptotic freedom to discuss the 
behavior of the strong interaction potential at large momentum transfer or at 
the short distance.  We will discuss some aspect of the confining potential in 
the next section using the lattice QCD method.  In this section, however, 
let’s consider the lowest order QCD diagram to generate the asymptotic free 
potential as shown in Fig. 6.13. 
 

 
 

Fig. 6.13 : The lowest order QCD Feynman Diagram for the interaction between two 
quarks u and d. 
 
 
The invariant amplitude for the diagram in Fig. 6.13 is given by 
 

    

€ 

−iM = u p3( )c3
+[ ] −igs

λα

2
γ µ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ u p1( )c1[ ] −i

q2

      × u p4( )c4
+[ ] −igs

λα

2
γµ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ u p2( )c2[ ]

     = igs
2 u p3( )γ µu p1( )[ ] 1

q2 u p4( )γµu p2( )[ ]

      × 1
4

c3
+λαc1( ) c4

+λαc2( ),

     (6.65) 



Homework:	Compute the color factors between the 
two quarks and verify that the same colors repel 
and different colors attract each other.  
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which is basically the same with QED amplitude except that ge is replaced 
by gs and the additional color factor is introduced.  Here, the color factors of 
the quarks are given by the column vectors of three components and they are 
designated by c1, c2, c3 and c4.  The exchanged gluon has the color matrix in 
SU(3) denoted by λα and α  runs from 1 to 8 for the eight gluons.  The SU(3) 
color matrices are called the Gell-Mann matrices and they are given by 
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The Gell-Mann Matrices satisfy the SU(3) algebra given by 
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strong interactions.  While the nature of the strong interactions is still under 
investigation in order to explain the confinement mechanism of colored 
quarks and gluons, one can use the asymptotic freedom to discuss the 
behavior of the strong interaction potential at large momentum transfer or at 
the short distance.  We will discuss some aspect of the confining potential in 
the next section using the lattice QCD method.  In this section, however, 
let’s consider the lowest order QCD diagram to generate the asymptotic free 
potential as shown in Fig. 6.13. 
 

 
 

Fig. 6.13 : The lowest order QCD Feynman Diagram for the interaction between two 
quarks u and d. 
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Hint:	Gell-Mann	matrices	in	SU(3)			
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and others to be zero.  From Eq. (6.65), one can extract the non-relativistic 
potential at short distances given by 
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Likewise, one can find the same color factor applies to all sextet {6} colored 
states; 
 

 
 

(6.73) 
 
 
 
 

Since two color triplets can make sextet and anti-triplet, i.e. 
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one can also consider the color factor for the }3{  states; 
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From the results in Eqs. (6.72) and (6.76), one may conclude that the same 
color repels each other because f > 0 and the different colors attract each 
other if their configurations is antisymmetric because f < 0.  Similarly, 
between quark and antiquark, the potential is given by 
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Even though this result applies only to the short distance scale, it is quite 
interesting to note that the color singlet configuration sustains the most 
attractive force compared to any other color configurations.  As a final 
remark of this section, the color charge of the gluons can be also viewed as a 
necessary condition for the color charge conservation on the local SU(3) 
gauge invariance.  To see this, one can consider the two gluon production in 
quark and antiquark annihilation shown in Fig. 6.14. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.14 : ggqq →  and Gluon triple vertex 

 
Under the gauge transformation of the gluon with the four-momentum p3, 
i.e. 
 

,)()( 33 XppApA µµµ +→  

 
where X is a scalar function associated with the gauge degree of  freedom, 
the diagrams in (a) and (b) of Fig. 6.14 give the deviation by the gauge 
transformation as follows 

Same colors repel and  
different colors attract  
each other. 	
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absorption of an electron; i.e. ,ee →γ  then the lowest order QED diagram 
for this process is given by 
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where we assigned the incoming and outgoing momenta of electrons as 

21  and pp , respectively, and thus the photon momentum is given by 

12 pp − .  Using the QED Feynman rules discussed in this section we find 
the invariant amplitude as follows; 
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or 
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Thus, in order for the invariant amplitude given by Eq. (5.118) to be 
invariant under the gauge transformation, one has to show that 
 

      

€ 

ΔM = ʹ M − M

= −
ge

i!
˜ χ ⋅ u (p2 )( / p 2 − / p 1)u(p1)

= 0,

         (5.121) 

 
regardless of the function χ~ .  This means that 
 

0)())(( 1122 =/−/ pupppu                       (5.122) 
 
to show the gauge invariance.  In fact, one can easily see that Eq. (5.122) is 
satisfied because of the free Dirac equation, i.e. 
 

)()( 111 pmcupup =/            (5.123) 
and  

),()( 222 pumcppu =/            (5.124) 
or 

.0
)())(()())(( 121122

=
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     (5.125) 

 
Note also that this implies the conservation of the vector current µJ  given 
by 

)()( 12 pupuJ µµ γ=            (5.126) 
 

because the current conservation in the coordinate space is given by 
 

0=∂ µ
µ J             (5.127) 

 
and expressed in the momentum space by 
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Since Eq. (5.125) is equivalent to Eq. (5.128), one can identify the gauge 
invariance as the current conservation. 
 
 
 
 
5.5 Electron Positron Annihilations 
 
 
As an application of QED Feynman rules, let us consider the process of 

−+ µµ  and  production in −+ ee  and  annihilation, i.e. −+−+ → µµee .  
This is an important process to test QED because the process involves 
antiparticles and the annihilation and production of particle and antiparticle 
pairs.  The lowest order QED Feynman diagram for this process is shown in 
Fig. 5.1. 
 

 

 
Fig. 5.1 : The lowest order QED Feynman diagram for   

€ 

e+e− → µ+µ− . 
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Even though this result applies only to the short distance scale, it is quite 
interesting to note that the color singlet configuration sustains the most 
attractive force compared to any other color configurations.  As a final 
remark of this section, the color charge of the gluons can be also viewed as a 
necessary condition for the color charge conservation on the local SU(3) 
gauge invariance.  To see this, one can consider the two gluon production in 
quark and antiquark annihilation shown in Fig. 6.14. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.14 : ggqq →  and Gluon triple vertex 

 
Under the gauge transformation of the gluon with the four-momentum p3, 
i.e. 
 

,)()( 33 XppApA µµµ +→  

 
where X is a scalar function associated with the gauge degree of  freedom, 
the diagrams in (a) and (b) of Fig. 6.14 give the deviation by the gauge 
transformation as follows 
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which is basically the same with QED amplitude except that ge is replaced 
by gs and the additional color factor is introduced.  Here, the color factors of 
the quarks are given by the column vectors of three components and they are 
designated by c1, c2, c3 and c4.  The exchanged gluon has the color matrix in 
SU(3) denoted by λα and α  runs from 1 to 8 for the eight gluons.  The SU(3) 
color matrices are called the Gell-Mann matrices and they are given by 
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The Gell-Mann Matrices satisfy the SU(3) algebra given by 
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where the antisymmetric structure constants αβγf  are given by 
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We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the
Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and
using experimental input values for the masses and decay constants of the pion and the kaon, we obtain

Λð3Þ
MS

¼ 341ð12Þ MeV. The nonperturbative running up to very high energies guarantees that systematic

effects associated with perturbation theory are well under control. Using the four-loop prediction for

Λð5Þ
MS

=Λð3Þ
MS

yields αð5Þ
MS

ðmZÞ ¼ 0.11852ð84Þ.

DOI: 10.1103/PhysRevLett.119.102001

Introduction.—An essential input for theory predictions
of high energy processes, in particular for phenomenology
at the LHC [1–4], is the QCD coupling αsðμÞ ¼ g2sðμÞ=ð4πÞ
at energy scales μ ∼mZ and higher. In this work we present
a subpercent determination of the strong coupling at the Z
pole mass using the masses and decay constants of the pion
and kaon as experimental input and lattice QCD as a
computational tool.
Perturbation theory (PT) predicts the energy dependence

of the coupling as

g2sðμÞ ∼μ→∞ 1

2b0 logðμ=ΛsÞ þ ðb1=b0Þ log logðμ=ΛsÞ
þ % % %

ð1Þ
in terms of known positive coefficients, b0;1, and a single
parameter, Λs, which can also serve as the nonperturbative
scale of the theory. The label s, called scheme, summarizes
all details of the exact definition of gs. Conventionally one
chooses the so-called s ¼ MS scheme [5], butΛ parameters
in different schemes can be exactly related with a one-loop
computation [6].

Our computation of αMS is based on a determination of
the three-flavor Λ parameter. To outline the steps of our
determination, we write

Λð3Þ
MS

¼
Λð3Þ
MS

μPT
×

μPT
μhad

×
μhad
fπK

× fPDGπK : ð2Þ

As experimental input we use the Particle Data Group
(PDG) values [7] for the following combination of decay
constants:

fπK ≡ 1

3
ð2fK þ fπÞ ¼ 147.6 MeV: ð3Þ

The key elements are then the determination of the ratio of
scales μPT=μhad and the ratio μhad=fπK, i.e., our hadronic
scale in units of fπK. Both computations are performed in a
fully nonperturbative way.
By choosing a large enough scale μPT and including

higher orders of PT in Eq. (1), the ratio Λð3Þ
MS

=μPT can be
determined with negligible errors.
With Nf > 2 flavors, so far a single work [8] contains

such a computation with all steps, including the connection
of low energy μhad to large μPT, using numerical simulations
and a step scaling strategy. This strategy, developed by the
ALPHA Collaboration [9–12], suppresses the systematic
errors from the use of PT.
Here, we put together (and briefly review) the first factor

in Eq. (2) and our recent significant improvements in
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[24,25]. These two properties make it an ideal choice to
match with the asymptotic perturbative regime of QCD.
Second, one can use the gradient flow (GF) to define

renormalized couplings [26]. For this purpose, one introdu-
ces a flow time t ≥ 0 and defines the flow fieldBμðt; xÞ as the
solution of the gradient flow equation

∂tBμðt; xÞ ¼ DνGνμðt; xÞ;
Gμνðt; xÞ ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν&; ð9Þ

with the initial value Bμð0; xÞ ¼ AμðxÞ given in terms of the
original gauge field. The flow time t has the dimension of a
squared length and is a new external scale which can be
chosen at will. For t > 0, fluctuations of AμðxÞ at length
scalesmuch smaller than

ffiffiffiffi
8t

p
are suppressed in the flow field

Bμðt; xÞ. This smoothing property implies that gauge invari-
ant composite fields made out of Bμðt; xÞ are finite [27] and
can be used to define renormalized couplings. In particular,
in infinite volume such a coupling can be defined as

g2∞ðμÞ ¼
16π2

3
× t2hEðtÞijμ¼1=

ffiffiffi
8t

p ; ð10Þ

in terms of the action density [26] EðtÞ¼1
4G

a
μνðt;xÞGa

μνðt;xÞ.
In finite volume the coupling g2GFðμÞ is defined by

imposing a fixed relation,
ffiffiffiffi
8t

p
¼ cL, between the flow

time and the volume [21,28]. Details can be found in the
original work [14]. Since the statistical precision is gen-
erally good and scales as Δstatg2GF ∼ g2GF, this coupling is
well suited at low energies.
In order to exploit the advantages of both finite-volume

schemes, we use the GF scheme at low energies, between
μhad and μ0. There we switch nonperturbatively to the SF
scheme (see Fig. 2). Then we run up to μPT. In this way, we
connected hadronic scales to μPT [13,14], cf. Table I.

In Table II we show our intermediate results for g2SFðμPTÞ
and μPT=μhad for two choices of a typical hadronic scale
μhad of a few hundred MeV. (In Ref. [14] only μhad;1 was
considered. Here we extend the analysis to μhad;2 in order to
have an additional check of our connection of large and
small volume physics.) In addition, we give Λð3Þ

MS
=μhad,

obtained by the NNLO perturbative asymptotic relation and
the exact conversion to the MS scheme. We have verified
that the systematic uncertainty ∼α2ðμPTÞ and power cor-
rections ∼ðΛ=μPTÞk from this limited use of perturbation
theory at scales above μPT are negligible compared to our
statistical uncertainties [13,29].
Connection to the hadronic world.—The second key

element is the nonperturbative determination of μhad in
units of the experimentally accessible fπK. Our determi-
nation is based on CLS ensembles [30] of Nf ¼ 3 QCD
with mu ¼ md ≡ m̂ in large volume. It is convenient to
define a scale μref by the condition

g2∞ðμrefÞ ¼ 1.6π2 ≈ 15.8; ð11Þ

and trajectories in the (bare) quark mass plane ðm̂; msÞ by
keeping the dimensionless ratio

ϕ4 ¼ ðm2
K þm2

π=2Þ=μ2ref ð12Þ

constant. (Note that μref is defined ensemble by ensemble,
and therefore it is a function of the quark masses. Instead of
μref , it is customary in the lattice literature to quote

ffiffiffiffiffiffi
8t0

p
¼

1=μref [26].) Moreover, we define a reference scale μ⋆ref at
the symmetric point (mu ¼ md ¼ ms) by

μ⋆ref ≡ μref jϕ4¼1.11;mu¼md¼ms
: ð13Þ

The requirement that the ϕ4 ¼ constant trajectory passes
through the physical point, defined by

m2
π=f2πK ¼ 0.8341; m2

K=f
2
πK ¼ 11.21; ð14Þ

results in ϕ4 ¼ 1.11ð2Þ in the continuum limit [31] and
motivates the particular choice in Eq. (13).
Since the combination fπK has a weak and well under-

stood dependence on the pion mass along trajectories with
constant ϕ4, a precise extrapolation from the symmetric
point to the physical point can be performed [31,32], see
Fig. 3. Continuum extrapolations with four lattice spacings,
0.05 fm≲ a≲ 0.09 fm, together with the PDG value of
Eq. (3), yield [31]

FIG. 2. Running couplings of Nf ¼ 3 QCD from integrating
the nonperturbative β functions in the SF and GF schemes
[13,14]. They are matched nonperturbatively by defining
g2SFðμ0Þ ¼ 2.012 and computing g2GFðμ0=2Þ ¼ 2.6723ð64Þ.

TABLE II. Scale ratios and values of the coupling determined
from nonperturbative running from μhad to μ0=2 in the GF and
from μ0 to μPT in the SF scheme.

g2GFðμhadÞ g2SFðμPTÞ μPT=μhad Λð3Þ
MS

=μhad

11.31 1.193(5) 349.7(6.8) 1.729(57)
10.20 1.193(5) 322.2(6.3) 1.593(53)
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The first error in αðμÞ is due to Λð3Þ
MS

and the quark mass
uncertainties, where the latter are hardly noticeable. The
second error listed represents our estimate of the truncation
error in PT in the connection Λð3Þ

MS
→ Λð4Þ

MS
− Λð6Þ

MS
. We

arrive at it as follows. The 2-, 3-, 4-loop terms in Eq. (21)
combined with the 3-, 4-, 5-loop β functions in Eq. (20)
lead, e.g., to contributions 128,19,6 in units of 10−5 to αð5Þ

MS
.

We take the sum of the last two contributions as our
perturbative uncertainty. Within PT, this is conservative.
Recently, Herren and Steinhauser [56] considered also
μ ≠ m in Eq. (18). Their error estimate, 0.0004, would
change little in the uncertainty of our final result

αð5Þ
MS

ðmZÞ ¼ 0.11852ð84Þ: ð22Þ

Summary and conclusions.—QCD offers a plethora of
quantities, like hadron masses and meson decay constants,
that can be used as precise experimental input to compute
the strong coupling and quark masses. However, the
nonperturbative character of the strong interactions makes
these computations difficult. Lattice QCD offers a unique
tool to connect, from first principles, well-measured QCD
quantities at low energies to the fundamental parameters of
the standard model. As perturbative expansions are not
convergent, but only asymptotic, the challenge for precise
results is to nonperturbatively reach energy scales where
the strong coupling is small enough [13]. Because of the
slow running of αs, the hadronic and perturbative regimes
are separated by 2 to 3 orders of magnitude.
Finite-size scaling allows one to bridge such large energy

differences nonperturbatively. It trades the systematic
uncertainties associated with the truncation of the pertur-
bative series at relatively low energies for statistical
uncertainties which are easy to estimate.
Our precise data for the running coupling [13,14],

together with the high-quality set of ensembles provided
by the CLS initiative [30] at lattice spacings as small as
a ≈ 0.039 fm, and an accurate determination of the scale
[31], allow us to reach a precision of 0.7% in αð5Þ

MS
ðmZÞ.

The factor μPT=μhad contributes 87% of the uncertainty in
αð5Þ
MS

. This uncertainty is dominantly statistical and could
certainly be reduced significantly by some additional effort.
While present knowledge indicates small and perturba-
tively computable quark-loop effects in the matching at the
heavy-quark thresholds, the uncomfortable need of using
PT at scales as low as mcharm can only be avoided by a full
four-flavor computation. This is a mandatory step as soon
as one attempts another controlled reduction of the total
uncertainty.
We finally note, that our result αð6Þ

MS
ð1.508 TeVÞ ¼

0.0852ð4Þ is in good agreement with the recent CMS
determination [57] from jet cross sections with pT ∈
½1.41; 2.5% TeV. Reference [57] gives αð5Þ

MS
ð1.508 TeVÞ ¼

0.0822ð33Þ which was already converted to
αð6Þ
MS

ð1.508 TeVÞ ¼ 0.0840ð35Þ in [56]. Although LHC
data do not yet reach the precision of our result (evolved
from lower energy), comparisons at such high energies are
an excellent test of QCD and of the existence of massive
colored quanta.

The technical developments which enabled the results
presented in this Letter are based on seminal ideas and
ground breaking work by Martin Lüscher, Peter Weisz, and
Ulli Wolff, most importantly, the use of finite-size scaling
methods for renormalized couplings, perturbation theory on
the lattice and in the SF to two loop order, and the use of the
gradient flow. We would like to express our gratitude to
Martin, Peter, and Ulli for collaborative work, numerous
enlightening discussions and advice over the years.
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TABLE III. Main results of this work. Λð3Þ
MS

, Eq. (17), is
determined nonperturbatively and used, together with the per-

turbative estimates of ΛðNfÞ
MS

=Λð3Þ
MS

, to produce all other numbers.
As additional input we use the masses m&

charm ¼ 1.280ð25Þ GeV,
m&

bottom ¼ 4.180ð30Þ GeV, mZ ¼ 91.1876 GeV [7], and m&
top ¼

165.9ð2.2Þ GeV [55].

Nf
ΛðNfÞ
MS

[MeV] μ α
ðNfÞ
MS

ðμÞ

4 298(12)(3)
5 215(10)(3) mZ 0.11852(80)(25)
6 91.1(4.5)(1.3) 1.508 TeV 0.08523(41)(12)
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.0)())(( =−−∂ xmcxA
c
e

i ψγγ µ
µ

µ
µ!                      (5.107) 

 
From this, one can see that the interaction between photon and electron 
involves the γ-matrix and the coupling constant.  The Feynman rule of the 
QED vertex is then given by 
 
 

                                  
  (5.108) 

 
 
 
where the solid and wiggly lines denote electron and photon, respectively, 
and the dimensionless coupling constant eg  is related to the charge of the 
positron by 
 
 

.44
πα

π
==

c
ege !

           (5.109) 

 
For the external electron lines, the plane wave solutions are used and the 
rules are given by 
 
  
  

(5.110) 
     
 
 
For the positron, the directions of arrows are opposite to the case of electron 
and the rules for the external positron lines are given by 
                   

           (5.111) 
 

,                            e
µµ γγ igige =→

incoming electron: 
 
outgoing electron: 

u;

u;

incoming positron: 
 
outgoing positron: 

v;

v;
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where ρ  and J
!

 are the charge and current densities, respectively.  Using 
the four vector notations for the current and the electromagnetic fields, one 
can reduce Eqs. (5.88) and (5.89) as 
 

,4 νµν
µ

π J
c

F =∂               (5.92) 

where 
),( JcJ
!

ρµ =               (5.93) 
and 
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F µν            (5.94) 

 
Likewise, Eqs. (5.90) and (5.91) can be reduced to 
 

,0=∂ αβµ
µναβε F                           (5.95) 

 
where µναβε  is +1 for ),,,,( βανµ an even permutation of (0, 1, 2, 3),  -1 
for an odd permutation and  0 if two or more indices are the same.  In terms 
of the four-vector potential, ),( AA

!
Φ=µ , the field strength tensor µνF is 

given by   
 

.µνµµ AAF vv ∂−∂=              (5.96) 
 
Here, we note that µνF  is invariant under the following transformation 
 

).()()()( xXxAxAxA µµµµ ∂+=ʹ→            (5.97) 
 

where X(x) is any scalar field.  The transformation in Eq. (5.97) is known as 
the (local) gauge transformation.  Under the gauge transformation, µνF  is 
invariant and so do the Maxwell’s equations (Eqs. (5.92) and (5.95)).  Even 
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Finally, using γ5 and other γ-matrices, one can consider the following bilinear 
products of spinors, 
 

(scalar)      )()( xx ψψ              (5.76) 
 

lar)(pseudosca      )()( 5 xx ψγψ            (5.77) 
 

(vector)      )()( xx ψγψ µ             (5.78) 
 

 vector)(axial      )()( 5 xx ψγγψ µ            (5.79) 
 

  )()( xx vψσψ µ (antisymmetric tensor)                        (5.80) 
 
where the adjoint spinor )(xψ  is given by 
 

    

€ 

ψ ( x) =ψ +(x)γ 0.             (5.81) 
 
It is not difficult to show that Eq. (5.76) is invariant under any 
transformation matrix, regardless whether it is continuous or discrete 
transformation.  As an example, Sr is unitary and does not involve 0γ so that 
 

).()(
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SS

SSxx

rr

rr

ψψψγψ

ψγψ

ψγψψγψψψ
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          (5.82) 

 
The proof for the boost operation is given in Appendix E.  However, the 
pseudoscalar product given by Eq. (5.77) satisfies the transformation rule 
differently for the continuous and discrete operations.  Under Sbr, Eq. (5.77) 
satisfies 
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Thus, in order for the invariant amplitude given by Eq. (5.118) to be 
invariant under the gauge transformation, one has to show that 
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= −
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         (5.121) 

 
regardless of the function χ~ .  This means that 
 

0)())(( 1122 =/−/ pupppu                       (5.122) 
 
to show the gauge invariance.  In fact, one can easily see that Eq. (5.122) is 
satisfied because of the free Dirac equation, i.e. 
 

)()( 111 pmcupup =/            (5.123) 
and  

),()( 222 pumcppu =/            (5.124) 
or 

.0
)())(()())(( 121122

=
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Note also that this implies the conservation of the vector current µJ  given 
by 

)()( 12 pupuJ µµ γ=            (5.126) 
 

because the current conservation in the coordinate space is given by 
 

0=∂ µ
µ J             (5.127) 

 
and expressed in the momentum space by 
 

The invariance under local gauge transformation leads to the current conservation. 
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Table 3.2: Meson Spectra (in the unit of MeV/c2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5 Baryon Wavefunctions 
 
 
In this section, we discuss the construction of the baryon wavefunction.  The 
baryon is made of three quarks and the Pauli’s exclusion principle must hold.  
Let us first introduce two different tensor products to construct a multiquark 
wavefunction.  They are the inner product and the outer product.  The inner 
product does not change the number of particles but enlarges the quantum 
space.  For example, the quantum space of spin and that of isospin can make 
a inner product to yield the enlarged quantum space of spin-isospin.  On the 
other hand, the outer product does not change the quantum space but 
increases the number of particles.  For example, in the spin quantum space, 
the outer product of two spin-1/2 particles yields the spin singlet and triplet 
states as we learned in previous sections. 
 
 In order to construct a multiquark wavefunction, we first use outer 
product to set the multiquark repesenations in a particular quantum space.  
Once we obtain the representations in each quantum space, we then use inner 
product to find the wavefunction in the total quantum space.  Let’s give an 

 (3.101) Eq.  Experiment 

π  140 138 

K  484 496 

η  559 549 

ρ  780 776 

ω  780 783 

*K  896 892 

φ  1032 1020 

Chapter 3  Quantum Mechanics 

Pedestrian Approach to Particle Physics 69 

,
21

21
21 mm

ssAmmM
!!
⋅

++=           (3.101) 

 
where M is the meson mass, m1 and m2 are the masses of quark and antiquark 
and 21  and ss !!

 are the spins of quark and antiquark, respectively.  Even 
though the strength of the spin-spin coupling is parameterized by the factor 

A in Eq. (3.101), the appropriate factors of 
21

1 and 1
mm

 from the magnetic 

moments of quark and antiquark are naturally given.  While this formula has 
only one parameter A in the sense that the constituent masses of u, d and s 
are rather well known at least approximately, it remarkably describes a 
number of meson masses in the pseudoscalar and vector mesons very close 
to the experimental values.  In Table 3.2, the results are summarized with the 
input of ,/310 2cMeVmm du ==  2/483 cMeVms =  and 

./160
2 2

2

cMeVmA u ⎟
⎠

⎞
⎜
⎝

⎛
=
!

  The factor 21 ss !! ⋅  is given by 

 

⎪
⎩

⎪
⎨

⎧

=

−=−−+
=

−−
=⋅

.
4
1;1
4
3;0

2
4
3

4
3)1(

2

2

2

2

2
2

2
1

2

21

!

!
!

"""
""

s

sss

sssss

        (3.102) 
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The ground state baryon masses are also in an excellent agreement with 
experimental data by considering the spin-spin interactions among three 
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The ground state baryon masses are also in an excellent agreement with 
experimental data by considering the spin-spin interactions among three 
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The ground state baryon masses are also in an excellent agreement with 
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The ground state baryon masses are also in an excellent agreement with 
experimental data by considering the spin-spin interactions among three 
quarks. 
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Energy-Momentum Dispersion Relations 

Dirac’s Proposition for Relativistic Dynamics 

1949 

    IFD	
Instant Form Dynamics 

    LFD	
Light-Front Dynamics 



Feynman Diagram: Invariant under all 10 Poincaré generators  

=
1

q2 −m2 =
1

s−m2 q2 = p1 + p2( )2 ≠m2

Four-momentum conservation but off-mass-shell 

Individual Time-Ordered Diagrams: Invariant only under  
            translation and rotation (6 kinematic generators)  

(ΔE)(Δt) ~ ! Three-momentum conservation but on-mass-shell 
t→	(Jme	evoluJon;	Jme	ordered	process	in	QFT;	Energy	is	not	conserved	within						)		Δt

mass of the intermediate boson. Of course, the physical
process can take place only above the threshold
s > 4M2, where M is the mass of the final particle and
antiparticle that are produced, e.g., the muon mass in the
eþe" !!þ!" scattering process. In the IFD, where
the initial conditions are set on the hyperplane t ¼ 0 and
the system evolves with the ordinary time t > 0, this mani-
festly covariant Feynman amplitude is decomposed into the
corresponding two time-ordered amplitudes, graphically
represented in Figs. 2(a) and 2(b). These two time-ordered
amplitudes correspond respectively to the following ana-
lytic expressions:

!a
IFD ¼ 1

2q0

!
1

p0
1 þ p0

2 " q0

"
(15)

and

!b
IFD ¼ " 1

2q0

!
1

p0
1 þ p0

2 þ q0

"
: (16)

It is not difficult to show that the sum of the time-ordered
amplitudes is identical to themanifestly covariant Feynman
amplitude,

!IFD ¼ !IFD
a þ !IFD

b

¼ 1

2q0

!
1

p0
1 þ p0

2 " q0
" 1

p0
1 þ p0

2 þ q0

"

¼ 1

s"m2 ; (17)

where the conservation of the three momentum ~p1 þ ~p2 ¼
~q as well as the energy-momentum dispersion relation q0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

p
in IFD is used to get the covariant denominator

s"m2 in the last step.
To obtain the corresponding time-ordered amplitudes in

an arbitrary interpolating angle ", we just need to change
the superscript 0 of the IFD energy variables in the energy
denominators to the superscipt þ̂ and multiply an overall
factor C to the amplitudes, i.e.,

!a
" ¼ 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 " qþ̂

!
(18)

and

!b
" ¼ " 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 þ qþ̂

!
: (19)

The overall factor C is necessary because the energy of the
particle with the four-momentum p!̂ in an arbitrary inter-
polation angle is given by pþ̂ while the contravariant pþ̂

used in the interpolating amplitudes is related to the
covariant pþ̂ with the factor C as shown in Eq. (13), i.e.,
pþ̂ ¼ Cpþ̂ þ Sp"̂. Note here that the factor S in front of
the longitudinal momentum p"̂ is irrelevant because the
longitudinal momenta of the initial particles must be can-
celled by the longitudinal momentum of the intermediate
particle due to the conservation of the longitudinal
momentum. Again, it is not so difficult to show that the
sum of the time-ordered amplitudes for any angle " is
identical to the manifestly covariant Feynman amplitude,

!" ¼ !a
" þ !b

"

¼ 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 " qþ̂
" C

pþ̂
1 þ pþ̂

2 þ qþ̂

!

¼ 1

s"m2 ; (20)

where we used the relation between the covariant and
contravariant indices [see Eq. (13)] such as qþ̂ ¼ Cqþ̂ þ
Sq"̂ and the conservation of momenta p1"̂ þ p2"̂ ¼ q"̂
and ~p1?̂ þ ~p2?̂ ¼ ~q?̂, as well as the four-momentum sca-
lar product relation [see Eq. (10)], to get the Lorentz
invariant denominator s"m2 in the last step. It is also
rather easy to see that Eq. (20) becomes Eq. (17) as C goes
to the unity. In LFD, however, i.e., as C goes to zero, the
denominator in the first amplitude !a

"¼#=4, i.e., 1=ðpþ̂
1 þ

pþ̂
2 " qþ̂Þ ¼ 1=ðpþ

1 þ pþ
2 " qþÞ goes to infinity due to

the conservation pþ
1 þ pþ

2 ¼ qþ but the multiplication of
C ¼ 0 with this infinity makes the finite result 1=ðs"m2Þ,
while the second amplitude !b

"¼#=4 is wiped out due to

C ¼ 0. This result is akin to the very well-known result
from the work entitled ‘‘Dynamics at Infinite Momentum’’
[24]. However, we would like to make it clear that the

FIG. 2. Time-ordered amplitudes in IFD for the Feynman amplitude depicted in Fig. 1.
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by the longitudinal momentum of the intermediate particle due to the conservation of the
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FIG. 2: Time-ordered amplitudes in IFD for the Feynman amplitude depicted in Fig.1.

ordered amplitudes correspond respectively to the following analytic expressions:

Σa
IFD =

1

2q0

(
1

p0
1 + p0

2 − q0

)
, (15)

and

Σb
IFD = − 1

2q0

(
1

p0
1 + p0

2 + q0

)
. (16)

It is not difficulty
✿✿✿✿✿✿✿✿
difficult

✿
to show that the sum of the time-ordered amplitudes is identical

to the manifestly covariant Feynman amplitude:
✿
,
✿

ΣIFD = ΣIFD
a + ΣIFD

b

=
1

2q0

(
1

p0
1 + p0

2 − q0
− 1

p0
1 + p0

2 + q0

)

=
1

s − m2
, (17)

where the conservation of the three momentum p⃗1 + p⃗2 = q⃗ as well as the energy-momentum

dispersion relation q0 =
√

q⃗2 + m2 in IFD is used to get the covariant denominator s − m2

in the last step.

To obtain the corresponding time-ordered amplitudes in an arbitrary interpolating angle

δ, we just need to change the superscript 0 of the IFD energy variables in the energy

denominators to the superscipt +̂ and multiply an overall factor C to the amplitudes:
✿
,
✿
i.e.

Σa
δ =

1

2q+̂

(
C

p+̂
1 + p+̂

2 − q+̂

)
, (18)

and

Σb
δ = − 1

2q+̂

(
C

p+̂
1 + p+̂

2 + q+̂

)
. (19)

The overall factor C is necessary because the energy of the particle with the four-momentum

pµ̂ in an arbitrary interpolation angle is given by p+̂ while the contravariant p+̂ used in the

interpolating amplitudes is related to the covariant p+̂ with the factor C as shown in Eq.(13),

i.e. p+̂ = Cp+̂ + Sp−̂. Note here that the factor S in front of the longitudinal momentum

p−̂ is irrelevant because the longitudinal momenta of the initial particles must be cancelled

by the longitudinal momentum of the intermediate particle due to the conservation of the

8

ΣIFD
a +ΣIFD

b =
1
2q0

1
p1
0 + p2

0 − q0
−

1
p1
0 + p2

0 + q0
⎛

⎝
⎜

⎞

⎠
⎟

=
1

(p1
0 + p2

0 )2 − (q0 )2

=
1

{(p1
0 + p2

0 )2 − ( !p1 +
!p2 )

2}−{(q0 )2 − !q2}

=
1

(p1 + p2 )
2 − q2

=
1

s−m2

: Three-momentum     
     conservation  

: q2 =m2 ; on -mass-shell 



1
E1 +E2 −Eq

−
1

Eq+E3 +E4

= −
1

Eq+E1 +E2
→ 0

S.Weinberg, PR158,1638(1967) 
“Dynamics at Infinite Momentum” 

Infinite Momentum Frame (IMF) Approach  

Note that this is still in the instant form (IFD).  



		However, in LFD, (b) drops for any 
reference frame (not just for IMF)   
τ (= t+z/c) →	

303

21

300

),(
pppp

ppp
pppp

EqualtEqual

+=↔

↔

−=↔

+
⊥

−

τ

220 mpp += +
⊥− +

=
p
mp

p
22

Energy-Momentum Dispersion Relations 

Zero-modes 
k1

+  = 0, k2
+  = 0  

Stability	Group	
6	 7	 (maximum) 

ΣLFD
a +ΣLFD

b =
1
q+

1
p1
− + p2

− − q−
+ 0

⎛

⎝
⎜

⎞

⎠
⎟

=
1

q+ (p1 + p2 )
2 + ( !p1⊥ +

!p2⊥ )
2

(p1 + p2 )
+

−
m2 +

!q⊥
2

q+
⎛

⎝
⎜

⎞

⎠
⎟

=
1

(p1 + p2 )
2 −m2

=
1

s−m2


