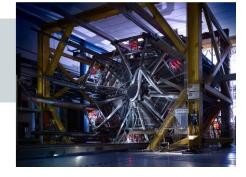


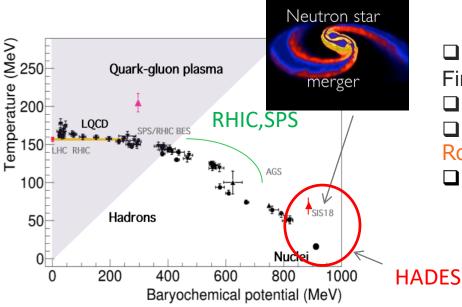
Space-like and Time-like Form Factors in Nucleon Resonance Production II HADES results and prospects for Time-like baryon transition form factors


Béatrice Ramstein, IJCLab, Orsay, France

APCTP Focus Program in Nuclear Physics 2021 Part II: Science Opportunities with EIC

Outline

General motivations of the HADES experiment at GSI

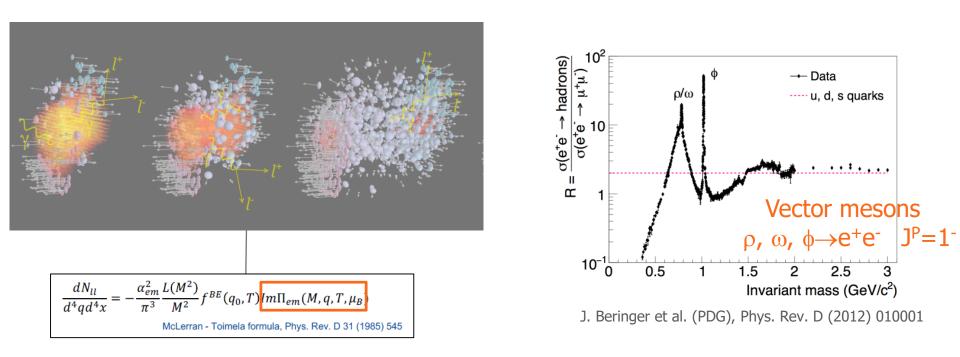

Dense hadronic matter and hadron structure studies

C Results for time-like electromagnetic baryon transitions in **pp** and π **p** reactions

Prospects for hyperon studies

HADES: exploring dense QCD matter

Equation-of-State:
 First order transition ? Search for a critical point
 Chiral symmetry restoration
 Microscopic structure of baryon dominated matte
 Role of baryonic resonances, hyperons
 Complementary to SPS,RHIC,...

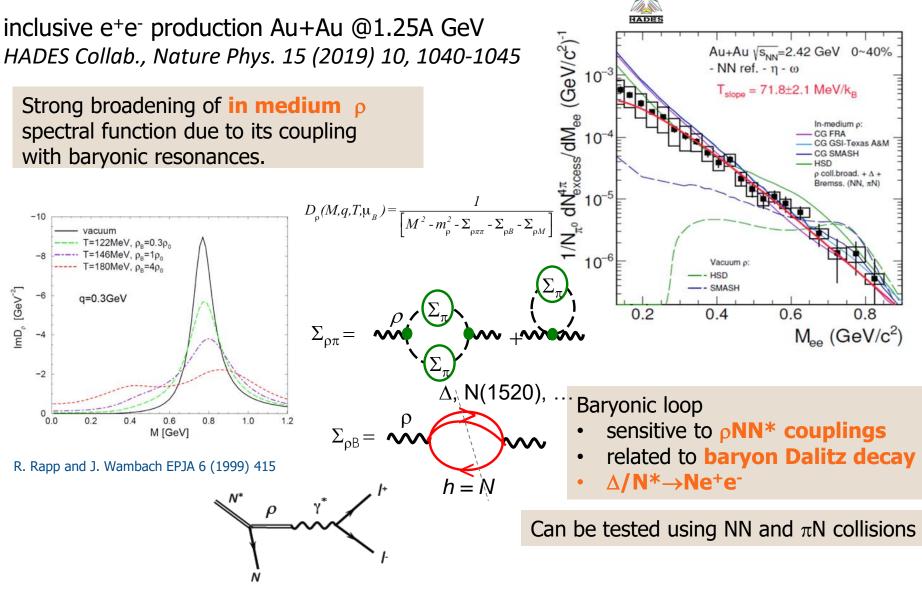

A+A: 1-3A GeV √s=2-2.4 GeV

T. Galatyuk, NPA-D-18-00411 (2018) QM18

Observables:

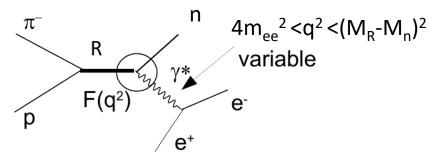
- Correlations and fluctuations
- ✓ Collective effects
- ✓ Strangeness
- Dileptons

Emissivity of strongly interacting matter



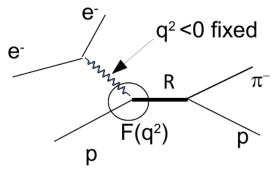
Dilepton signal

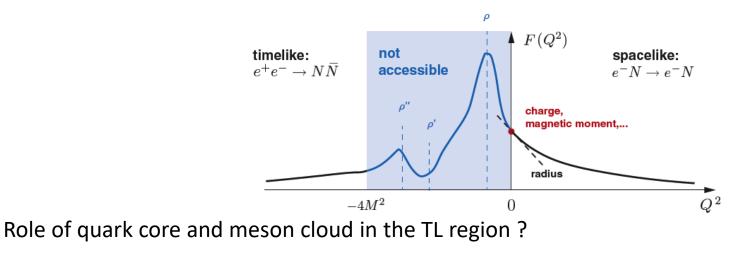
- Encodes information (T, μ_B, τ) throughout the collisions
- Vector Dominance Model → Direct access to in-medium spectral functions


Chiral symmetry restoration at finite (p,T)

In medium vector meson spectral functions

Baryon electromagnetic transitions


Time-like electromagnetic form factors


No data are available

Limit at q²=0 given by real photon decay

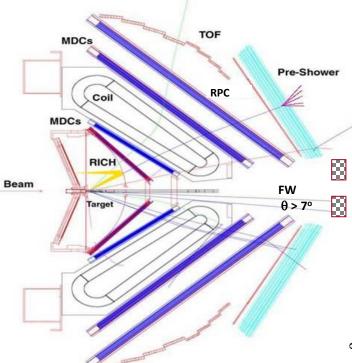
Space-like electromagnetic form factors

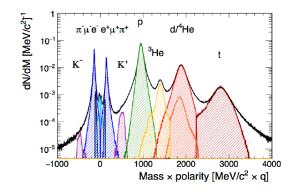
Data from Jlab (CLAS) up to $-q^2 = 4 \text{ GeV}^2$ Exploration of higher q^2 with CLAS12

Time-like electromagnetic structure via baryon Dalitz decay

• e^+e^- invariant mass distributions ($q^2 = M_{ee}^2$): effective form factor

R


e⁺/e⁻ angular distributions: spin density matrix coefficients


$$\frac{|A|^2}{\sigma} = \frac{1}{N} \left(8m_e^2 + 8|\mathbf{k}|^2 \left[1 - \tilde{\rho}_{11}^{(H)} + \cos^2\theta (8\tilde{\rho}_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi \operatorname{\mathbf{Re}}\tilde{\rho}_{10}^{(H)} + \sin^2\theta\cos(2\phi)\operatorname{\mathbf{Re}}\tilde{\rho}_{1-1}^{(H)} \right] \right)$$

$$\rho_{11} = \frac{1+\lambda}{3+\lambda} = \frac{A_{\perp}}{2A_{\perp}+A_{\parallel}} \qquad J=1/2 \qquad \lambda = \frac{\left|G_{E/M}^{\pm}\right|^2 - |G_C^{\pm}|^2}{\left|G_{E/M}^{\pm}\right|^2 + |G_C^{\pm}|^2} \qquad J>1/2 \qquad A_{\perp} = \frac{l+1}{l} \left|G_{M/E}^{\pm}\right|^2 + (l+1)(l+2) \left|G_{E/M}^{\pm}\right|^2 + (l+1)(l+$$

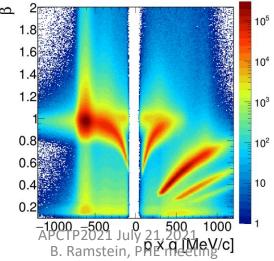
APCTP2021 July 21,2021

High Acceptance Di-Electron Spectrometer

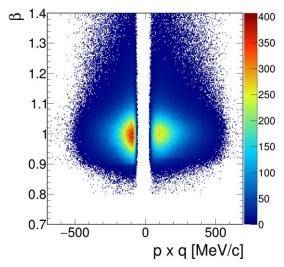
Experiments (2004-2019)

Hadronic matter studies

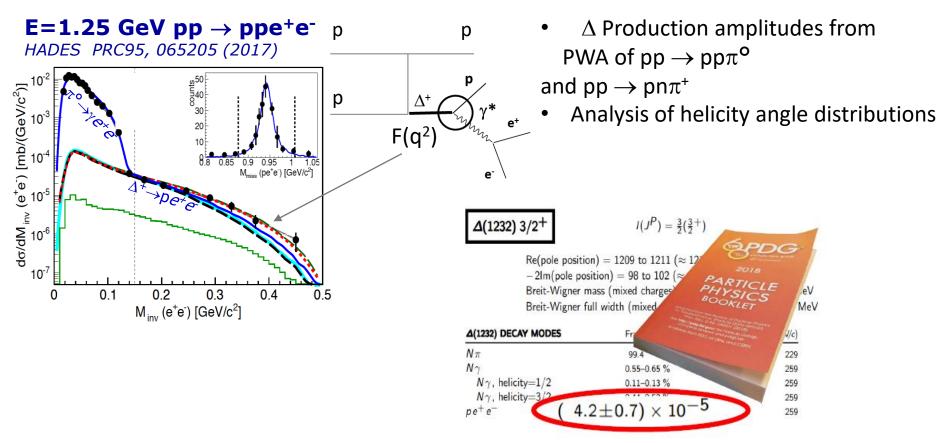
C+C 1 and 2A GeV, Ar+ KCl 1.75A GeV, Au+Au 1.25 AGeV, Ag+Ag 1.65A GeV


Cold matter:

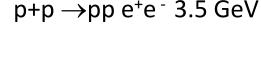
p+Nb 3.5 GeV, π -+C/W 1.7 GeV/c

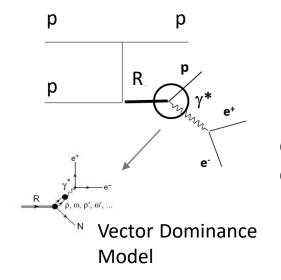

Elementary reactions:

p+p1.25, 2.2, 3.5 GeV, d+p 1.25 GeV/nucléon π⁻+CH₂/C 0.7 GeV/c


before lepton selection

after lepton selection

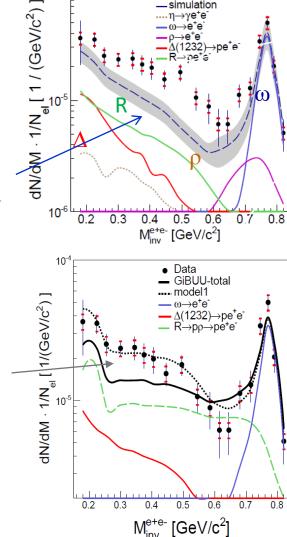

Δ (1232) Dalitz decay studies with HADES



□ First measurement of Δ (1232) Dalitz decay branching ratio ($\Delta^+ \rightarrow pe^+e^-$)

Sensitivity to the electromagnetic structure (form factor) of the N-∆ transition Wan and Iachello, Int. J Mod. Phys. A20 (2005) 1846 T. Pena and G. Ramalho, Phys.Rev. D85 (2012) 113014

Dalitz decay studies of heavier baryons with HADES

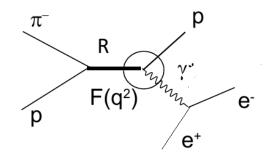


Δ(1232) N*(1440) N*(1520) N*(1535) N*(1680) Δ(1620) Δ(1700) Δ(1910)

Dalitz decays of point-like baryonic resonances constrained by $pp\pi^0$ and $pn\pi^+$ channels

+ "direct" ρ and ω

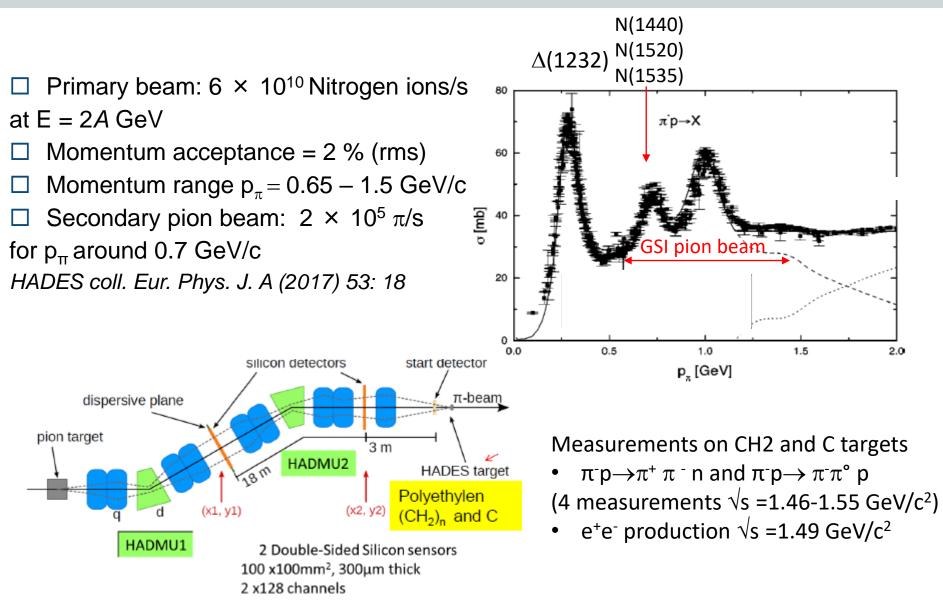
Effect of electromagnetic transition Form Factors for light baryonic resonances (N(1520),...)

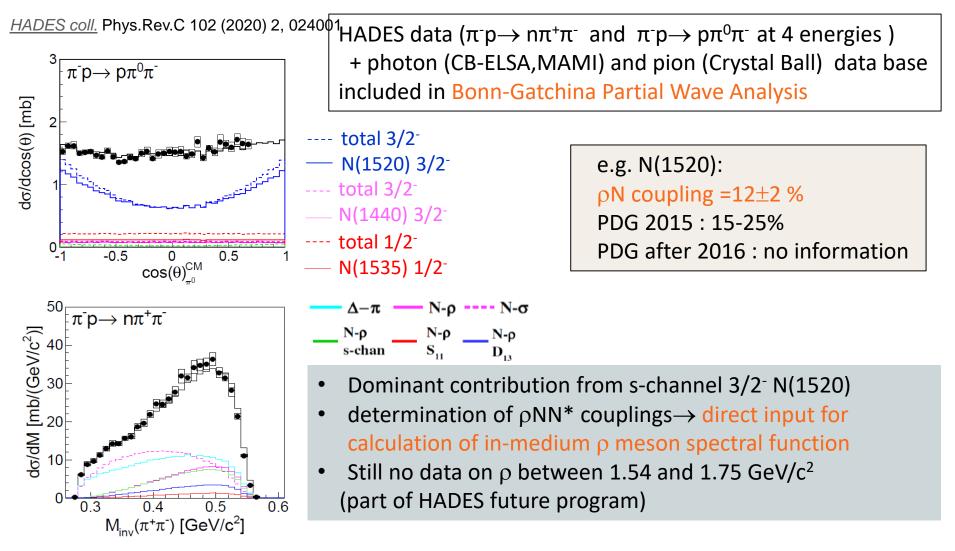

APCTP2021 July 21,2021

G. Agakishiev et al. Eur.Phys.J. A50 (2014) 8

> Data simulation

10-4


Specific motivations for pion beam experiments with HADES


Production of resonance with given mass in s-channel $M_R = \sqrt{s_{\pi p}}$

HADES + GSI pion beam (unique in world) is an ideal tool to
✓ study the unknown time-like electromagnetic structure of baryons
✓ complete the very scarce pion beam data base for hadronic couplings
Specific interest for pN couplings

Pion beam at GSI

Partial Wave Analysis in 2π production channels

PWA results-8 newPDG entries!

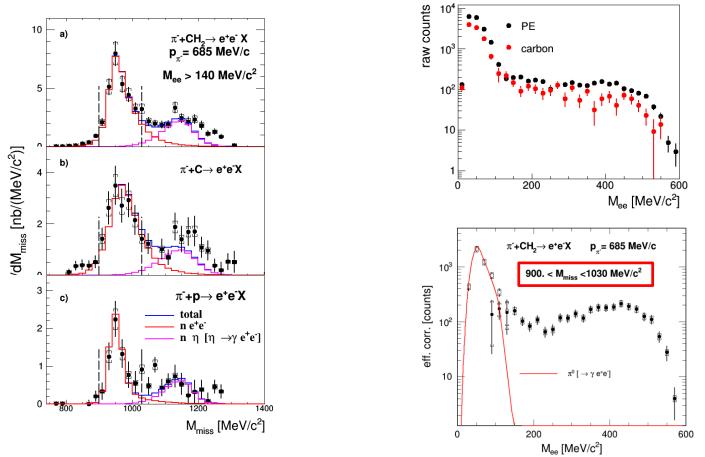
particle data group	Verification
---------------------	--------------

$\Gamma(\mathit{N}(1520) ightarrow arDelta(1232) \pi$, $S{-wave})/\Gamma_{ m total}$			
VALUE (%)	DOCUMENT ID		
12.1 ± 2.1	ADAMCZEWSKI- 2020		

$\Gamma(\mathit{N}(1520) ightarrow \mathit{\Delta}(1232) \pi$, $\mathit{D}{-}\mathit{wave})/\Gamma_{\mathrm{total}}$			
VALUE (%)	DOCUMENT ID ADAMCZEWSKI- 2020		
6 ± 2 ADAMCZEWSKI- 2020 $\Gamma(N(1520) o N ho$, S=3/2 , $S{-}wave)/\Gamma_{ m total}$			
VALUE (%)	DOCUMENT ID		
11.8 ± 1.9	ADAMCZEWSKI- 2020		
$\Gamma(N(1520) o N ho$, S :	=1/2 , $D{-}wave)/\Gamma_{ m total}$		
VALUE (%)	DOCUMENT ID		
0.4 ± 0.2	ADAMCZEWSKI- 2020		
$\Gamma(\ {\it N}(1520) o {\it N}\sigma\)/2$	P _{total}		

VALUE (%)	DOCUMENT ID		
7 ± 3	ADAMCZEWSKI- 2020		

 ρN coupling not present in PDG since 2016


$\Gamma(\mathit{N}(1535) ightarrow \Delta(1232) \pi$, $D{-}wave)/\Gamma_{ ext{total}}$		
VALUE (%)	DOCUMENT ID	
3 ± 1	ADAMCZEWSKI- 2020	

 $\Gamma($ N(1535) ightarrow Nho , $S=1/2)/\Gamma_{
m total}$

VALUE (%)	DOCUMENT ID		
2.7 ± 0.6	ADAMCZEWSKI- 2020		

$\Gamma($ $N(1535) ightarrow N ho$, S =3/2 , $D{-}wave)/\Gamma_{ m total}$			
VALUE (%)	DOCUMENT ID		
0.5 ± 0.5	ADAMCZEWSKI- 2020		

Selection of quasi-free $\pi^-p \rightarrow ne^+e^-$

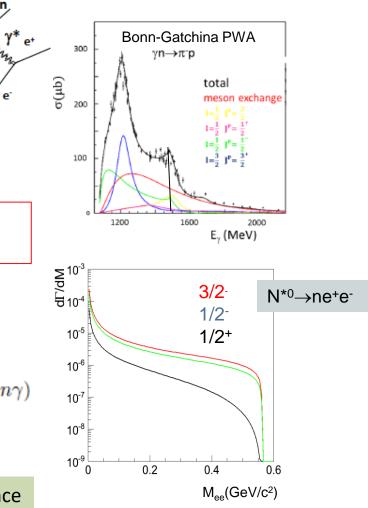
- Selection of the exclusive $\pi^- p \rightarrow ne^+e^-$ channel using missing mass
- Quasi-free treatment of π^- C interactions $\sigma_c/\sigma_p = 3.3$ (~Z^{2/3})
- Subtracion of residual π^0 contribution

Baryon Dalitz decay in a point-like approach : QED reference

• Limit at q²=0 given by π -p \rightarrow n γ

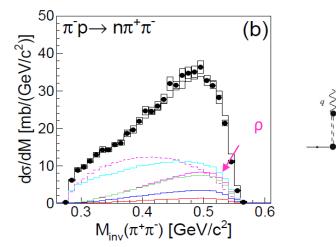
Bonn-Gatchina PWA of $\pi^-p \rightarrow n\gamma$

cross sections (µb) for $\pi^- p \rightarrow \gamma n$						
$I = 1/2 J^P = 1/2^ I = 1/2 J^P = 3/2^ I = 3/2 J^P = 3/2^+$				$2 J^P = 3/2^+$		
total	total	N(1535)	total	N(1520)	total	$\Delta(1232)$
220	60	34	60	47	13	18


Contribution of D13 to $\pi^-p \rightarrow \gamma n$ 27% (N1520 21%) of S11 to $\pi^-p \rightarrow \gamma n$ 27% (N1535 15%)

Generalization to finite q² (QED)
 M. Krivouchenko et al., Ann. of Phys. 296, 299–346 (2002)
 → "point-like" description of R→Ne⁺e^{-:}

For M_R~1.50 GeV/c²:
$$\sigma(\pi^- p \rightarrow ne^+e^-) \sim 1.35 \ \alpha \ \sigma(\pi^- p \rightarrow n\gamma)$$


σ (π⁻p→ne⁺e⁻) = 2.1 μb invariant mass distribution depends on J^P

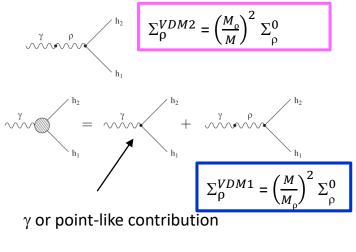
« γ « or « QED « reference

Test of Vector Dominance models

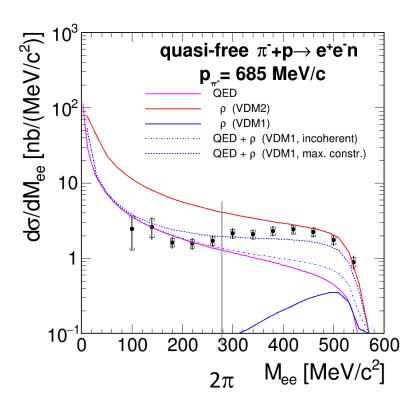
HADES collab., Phys.Rev. C102 (2020) 024001

Ideal case: $\rho \rightarrow \pi^+ \pi^-$ extracted from PWA Direct test of VDM models based on known ρ contribution

$$\left(\frac{d\sigma_{ee}}{dM_{ee}}\right)_{M_{ee}=M} = \left(\frac{d\sigma_{\pi\pi}}{dM_{\pi\pi}}\right)_{M_{\pi\pi}=M} \frac{\Gamma_{\rho \to e^+e^-}(M)}{\Gamma_{\rho \to \pi^+\pi^-}(M)}$$

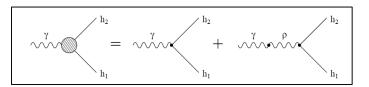

Test of 2 VDM versions (equivalent for universal coupling $g_{\rho}=g_{\rho\pi\pi}$) O'Connell Prog. Part. Nucl. Phys., Vol. 39, pp. 201-252, 1997

VDM2 : Sakurai, Phys. Rev 22 (1969) 981


- most commonly used in Heavy Ion models
- one single ρN coupling

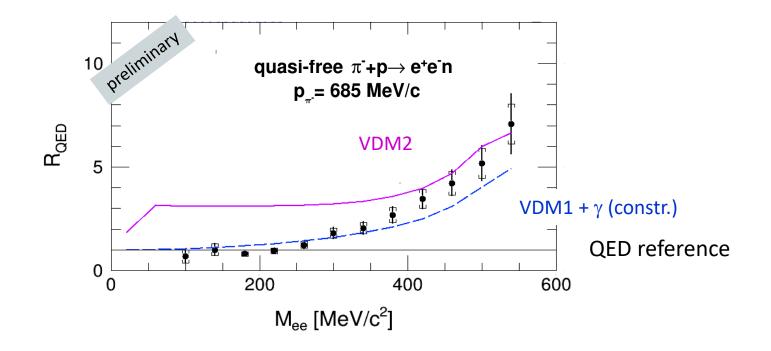
VDM1 : Kroll, Lee & Zuminio Phys. Rev. 157 (1967) 1376

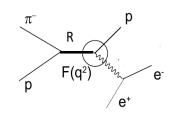
- ρ contr. vanishes at m_v*=0, γ N and ρ N couplings fixed independently
- **Phase** between γ and ρ contributions to be fixed by data


Data comparison with VDM2/VDM1 models

- Model independent results:
 - Strong excess with respect to the pointlike contribution (up to a factor 5)
 - Extrapolated cross section σ =2.14 ± 0.06 (data) ± 0.23 (QED ref) µb σ = 1.16 * σ _{QED}
- VDM1/VDM2 test:

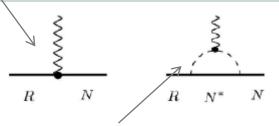
Large overestimation of measured yields with VDM2


Two component (direct γ + VDM1) with constructive interferences gives a **better description of the full spectrum**


Effective Form Factor

Effects of baryon time-like electromagnetic structure quantified by $R_{QED} = (d\sigma/dM)/(d\sigma/dM)_{QED}$

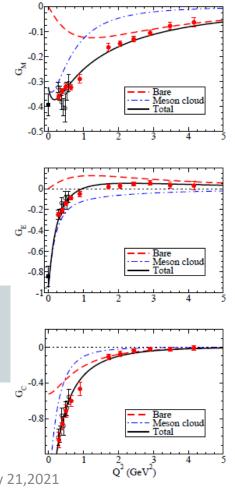
« effective form factor » with strong contribution of N1520


Baryon Dalitz decay: Form factor models

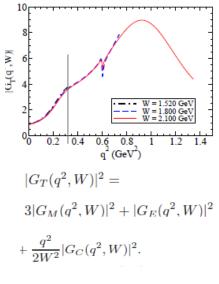
Recent model for N-N(1520) transition G. Ramalho and M. T. Pena, Phys. Rev. D95, 014003 (2017)

Quark core contribution :

• Quark form factors inspired by VDM

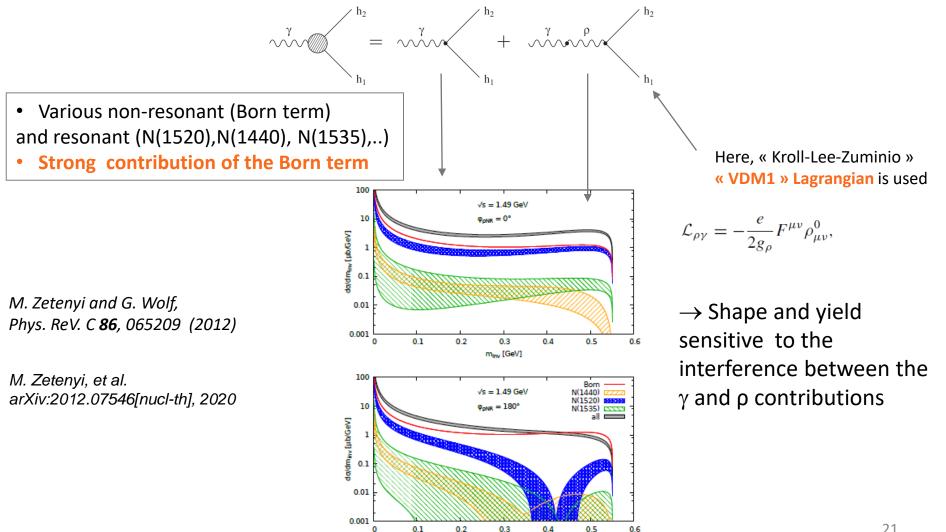


Meson cloud contribution:

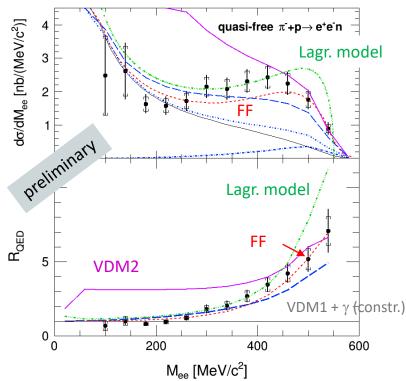

- Based on pion electromagnetic form factor
- Dominant contribution in the time like region

Similar model for N-N(1535) transition *Phys.Rev. D101 (2020)114008*

Parameters of the model fitted to space-like data



Predictions for the time-like region


APCTP2021 July 21,2021

Two-component Lagrangian model

miny [GeV]

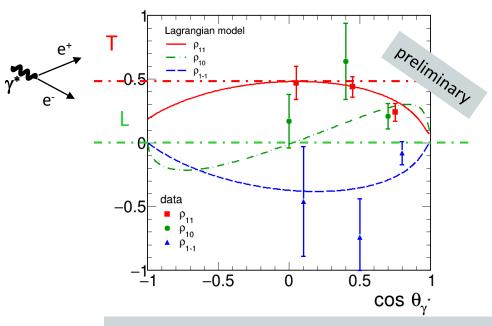
Invariant mass distribution: comparison to models

Comparison with FF model:

G. Ramalho and M. T. Pena, Phys. Rev. D95, 014003 (2017)

 Dominant pion cloud contribution: baryon transition form factor strongly related to the pion electromagnetic form factor (universal behavior of baryons ?)

Comparison with Lagrangian model:


M. Zetenyi et al. arXiv:2012.07546 [nucl-th]

- based on VDM1, takes into account the different contributions (resonant, non-resonant, photon, rho,..) in a coherent way *shown with phase* $\phi=90$
- very promising, but needs to be confronted to $\pi\pi$ spectrum

Analysis of e⁺/e⁻ angular distribution spin density matrix elements

$$\frac{|A|^2}{\sigma} = \frac{1}{N} \left(8m_e^2 + 8|\mathbf{k}|^2 \left[1 - \tilde{\rho}_{11}^{(H)} + \cos^2\theta (3\tilde{\rho}_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi \operatorname{Re}\tilde{\rho}_{10}^{(H)} + \sin^2\theta\cos(2\phi)\operatorname{Re}\tilde{\rho}_{1-1}^{(H)} \right] \right)$$

 ρ_{11} , ρ_{10} , ρ_{1-1} extracted in 3 bins in cos θ_{γ}

sdme sensitive to

- J^{P} : *e.g.* no dependence on θ_{γ} for J=1/2
- electromagnetic structure of the transition

$$\rho_{11} = \frac{1+\lambda}{3+\lambda} = \frac{A_{\perp}}{2A_{\perp} + A_{\parallel}}$$

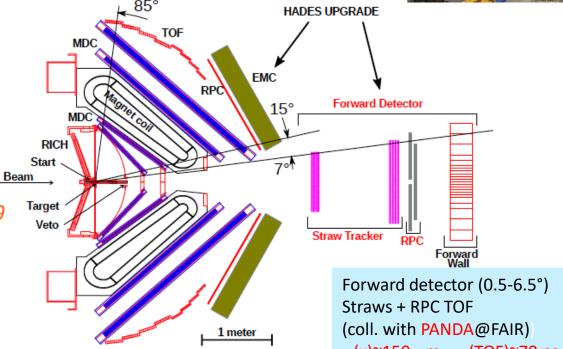
$$J=1/2 \qquad \lambda = \frac{\left|G_{E/M}^{\pm}\right|^2 - \left|G_C^{\pm}\right|^2}{\left|G_{E/M}^{\pm}\right|^2 + \left|G_C^{\pm}\right|^2}$$

$$J>1/2 \qquad A_{\perp} = \frac{l+1}{l} \left|G_{M/E}^{\pm}\right|^2 + (l+1)(l+2) \left|G_{E/M}^{\pm}\right|^2$$

$$A_{\parallel} = \frac{M^2}{m_{\star}^2} \left|G_C^{\pm}\right|^2$$

- Significant transverse contributions:
- Spin >1/2 contributions : consistent with strong N1520 contribution
- Good agreement with Lagrangian model
- More precise data needed

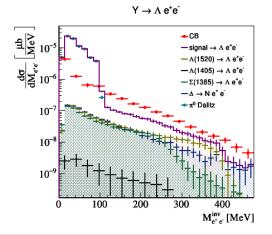
HADES upgrade: FAIR-Phase0

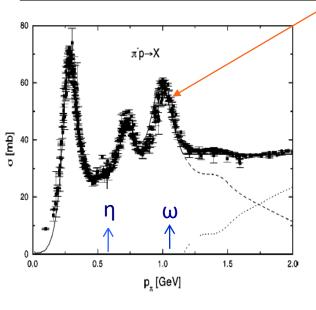

New RICH photon detector & read-out (coll. with CBM@FAIR) Gain in e⁺e⁻ efficiency x5

used in Au+Au exp. March 2019

New ECAL (lead glass) $\Delta E/E \sim 5\%$ γ and e⁺/e⁻ detection

used in Au+Au exp. March 2019




Future experiments at SIS18

February 2022: pp @ 4.5GeV
 HADES: Eur. Phys. J. A57, 138 (2021) feasibility study

Hyperon Dalitz decays: $pK^+\Lambda(1520) [\Lambda e^+e^-]$ $pK^+\Sigma(1385) [\Lambda e^+e^-]$ $\Xi, \Lambda\Lambda, \Lambda, \Sigma \rightarrow \Lambda\gamma$

Exp. proposal at GSI/SIS18 : 2023-2024: explore the **third resonance region** ($\sqrt{s^{-1.7} \text{ GeV/c}^2}$)

1. Baryon meson couplings $\pi\pi N$, ωn , ηn , $K^0\Lambda$, $K\Sigma$,.... Including neutral mesons thanks to the ECAL \rightarrow Inputs for Partial Wave Analysis \rightarrow Many baryon structure issues: confirmation of N'(1720), Cascade decays $(R \rightarrow R'\pi \rightarrow N\pi \pi)$, ηn couplings

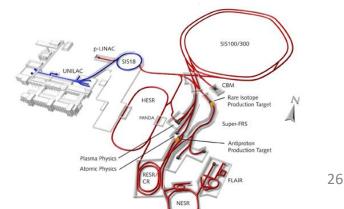
2. Time-like electromagnetic baryon transitions $\pi^-p \rightarrow ne^+e^-$

- Broad range of $q^2 = (M_{ee})^2 \rightarrow \text{sensitivity to form factors}$
- Check of Vector Dominance (both for ρ and ω)
- Spin density matrix elements

Conclusion

✓ Baryon resonance studies with the GSI pion beam + HADES detector (2^{nd} resonance region $\sqrt{s^{1.5} \text{ GeV}}$)

 \rightarrow improved knowledge of hadronic couplings

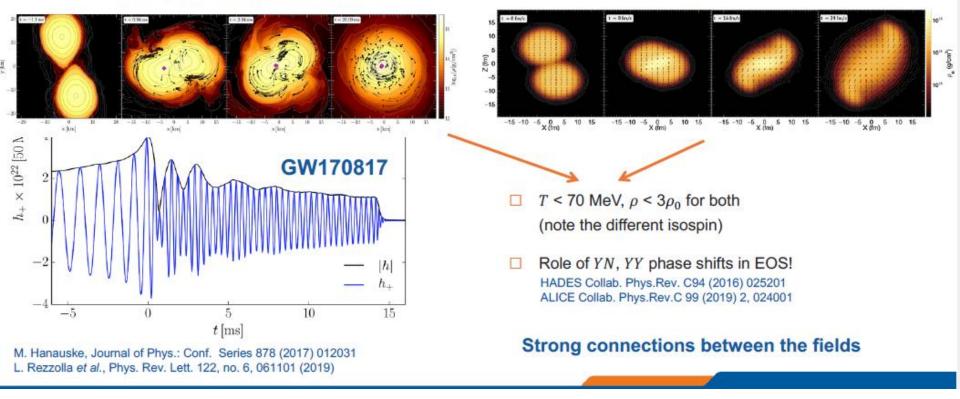

 \rightarrow very new information on time-like electromagnetic baryon transitions First test of Vector Dominance Model below 2π threshold and time-like electromagnetic form factor models

 \rightarrow Basic inputs for medium effects calculations

✓ 2022: Electromagnetic decays of hyperons in pp reactions : Y→ $\Lambda\gamma$, Y→ Λe^+e^- using Forward Detector + Electromagnetic Calorimeter

✓ 2023 and later : pion beam experiment in the third resonance region → Investigate heavier resonances N(1620), N(1720),...in e⁺e⁻ channels and many hadronic channels, e.g. $\pi^{-}p$ → ηn , K⁰ Λ , K Σ ,....

✓ After 2027: HADES experiments at FAIR ion and proton beams

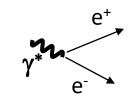


HADES Collaboration, Feb 22nd 20018

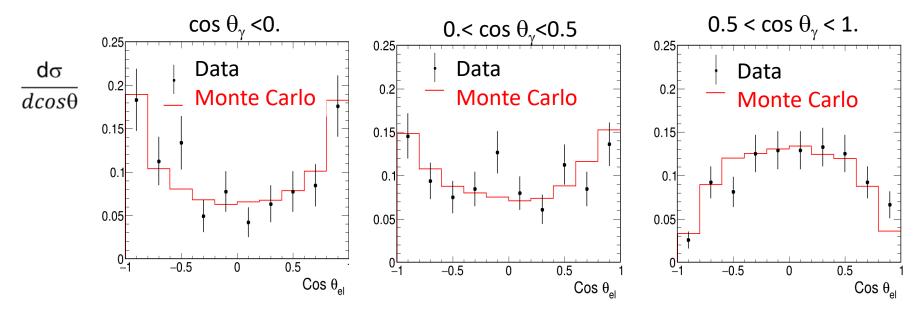
Thank you

LABORATORY STUDIES OF THE MATTER PROPERTIES (EoS) IN COMPACT STELLAR OBJECTS

Neutron Star merger (model calculations)


Au+Au $\sqrt{s_{NN}} = 2.4 \, GeV$ (UrQMD)

electron angular distributions: fit results in HADES acceptance


Similar procedure as Bonn-Gatchina PWA (collaboration with A. Sarantsev)

- Monte Carlo includes acceptance and efficiency of the detector
- □ The estimation of the coefficients is performed via a log-likelihood event-by-event approach
- \Box 3 bins in cos θ_{γ}

Quasi-free exclusive process $\pi^{-'}p' \rightarrow n \ e^+e^- \sqrt{s=1.49} \ GeV/c^2$ $M_{ee} > 300 \ MeV/c^2$

weighted Monte Carlo events compared to the data

