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p MASS (atomic mass units u)p MASS (atomic mass units u)p MASS (atomic mass units u)p MASS (atomic mass units u)

The mass is known much more precisely in u (atomic mass units) than in
MeV. See the next data block.

VALUE (u) DOCUMENT ID TECN COMMENT

1.00727646662 ±0.00000000009 OUR AVERAGE1.00727646662 ±0.00000000009 OUR AVERAGE1.00727646662 ±0.00000000009 OUR AVERAGE1.00727646662 ±0.00000000009 OUR AVERAGE Error includes scale factor of 3.1.

1.007276466583±0.000000000032 1 HEISSE 17 SPEC Penning trap
1.007276466879±0.000000000091 MOHR 16 RVUE 2014 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.007276466812±0.000000000090 MOHR 12 RVUE 2010 CODATA value
1.00727646677 ±0.00000000010 MOHR 08 RVUE 2006 CODATA value
1.00727646688 ±0.00000000013 MOHR 05 RVUE 2002 CODATA value
1.00727646688 ±0.00000000013 MOHR 99 RVUE 1998 CODATA value
1.007276470 ±0.000000012 COHEN 87 RVUE 1986 CODATA value

1The statistical and systematic errors are 15 and 29 in the last two places of the value.
The value disagrees with the MOHR 16 value by over 3 standard deviations.

p MASS (MeV)p MASS (MeV)p MASS (MeV)p MASS (MeV)

The mass is known much more precisely in u (atomic mass units) than in

MeV. The conversion from u to MeV, 1 u = 931.494 0054(57) MeV/c2

(MOHR 16, the 2014 CODATA value), involves the relatively poorly known
electronic charge.

VALUE (MeV) DOCUMENT ID TECN COMMENT

938.2720813±0.0000058938.2720813±0.0000058938.2720813±0.0000058938.2720813±0.0000058 MOHR 16 RVUE 2014 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

938.272046 ±0.000021 MOHR 12 RVUE 2010 CODATA value
938.272013 ±0.000023 MOHR 08 RVUE 2006 CODATA value
938.272029 ±0.000080 MOHR 05 RVUE 2002 CODATA value
938.271998 ±0.000038 MOHR 99 RVUE 1998 CODATA value
938.27231 ±0.00028 COHEN 87 RVUE 1986 CODATA value
938.2796 ±0.0027 COHEN 73 RVUE 1973 CODATA value
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A test of CPT invariance. Note that the comparison of the p and p charge-
to-mass ratio, given in the next data block, is much better determined.

VALUE CL% DOCUMENT ID TECN COMMENT

<7 × 10−10<7 × 10−10<7 × 10−10<7 × 10−10 90 1 HORI 11 SPEC pe−He atom
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Our intuitive perception of the mass is related to gravity (e.g. weighting experiment)


Spin can be also related to gravity, e.g.  measurement of Earth angular velocity (spin) 

with help of Foucault pendulum



Interaction of a hadron with gravity  

Let us change the metric in long wave, static way

gµ⌫(x) = ⌘µ⌫ + �gµ⌫(~r)

Than the response of the nucleon to the static change of the space-time metric can

be characterised by e. g. static EMT (Breit frame):

Tµ⌫(~r) =

Z
d3�

(2⇡)32E
e�i~r~�hp0|Tµ⌫(0)|pi,

MVP, PLB555 (2003)


�grav � 1

MN

S = � 1

16⇡G

Z
d4x

p
�g R+

Z
d4x

p
�gLM

A location     is uncertain by �r ⇠ ~
Mc

 Compton wave length or amplitude of Zitterbewegung

/Hilbert ‘1915/

~r

Tµ⌫(x) =
2p
�g

�SM

�gµ⌫(x)

At distances smaller than the Compton length pairs can be created: one particle description

is not adequate.  At large distances the “relativistic corrections” behave

The relative corrections to the distributions (via normalisation) 


The relative correction to the radii 


The problem discussed since1950th /Yennie et al. 1957/, the most recent discussion see e.g. /Jaffe ’20/ 


<latexit sha1_base64="FyICG+09TSavdrVe4CpjmQZ8Gck=">AAAB+nicdVDLSgMxFM3UV62vqS7dBIvgxiFTtdZd0Y0bpYJ9QDsOmTRtQzMPkoxSxn6KGxeKuPVL3Pk3ptMRVPTAhcM593LvPV7EmVQIfRi5ufmFxaX8cmFldW19wyxuNmUYC0IbJOShaHtYUs4C2lBMcdqOBMW+x2nLG51N/dYtFZKFwbUaR9Tx8SBgfUaw0pJrFruS+ZDeJPtleOFeQjFxzRKyjpB9UkEQWShFSqr2gQ3tTCmBDHXXfO/2QhL7NFCEYyk7NoqUk2ChGOF0UujGkkaYjPCAdjQNsE+lk6SnT+CuVnqwHwpdgYKp+n0iwb6UY9/TnT5WQ/nbm4p/eZ1Y9atOwoIoVjQgs0X9mEMVwmkOsMcEJYqPNcFEMH0rJEMsMFE6rYIO4etT+D9pli27YqGrw1LtNIsjD7bBDtgDNjgGNXAO6qABCLgDD+AJPBv3xqPxYrzOWnNGNrMFfsB4+wS/pZMH</latexit>

⇠ e�2MNr

When 3D Fourier transforms go bad

3D Fourier transforms okay for non-relativ
istic systems.

3D Fourier transforms approximately valid far above the Compton wavelength:

r �
h

mc

Proton:

Compton wavelength: 1.32 fm

Reduced wavelength: 0.21 fm

3D “mass radius”: 0.55 fm

Kharzeev, arXiv:2102.00
110

It’s a bad idea to use 3D Fourier

tranforms for the proton.
Using a dipole model

A. Freese (ANL)

Light front densities

February
24, 2021
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The energy factors Ep =
q
M 2 +

�
P � 1

2�
�2

and E 0
p =

q
M 2 +

�
P+ 1

2�
�2

do not factorize in their P and � dependence.

As previously found in Refs. [32, 33], Eq. (12) tells us that dependence on the hadron’s wave function cannot be removed or

even factored out of the spatial density when using fixed instant form time. Moreover, the expression obtained in Eq. (12) does

not resemble the conventional Breit frame Fourier transform at all. One would need to eliminate the P integral while setting

P = 0 in order to obtain the Breit frame transform, but such a procedure is incompatible with the spatially-localized state that

was used. States localized in momentum space—i.e., plane waves—would need to be used to set P = 0, but as found in Ref. [32],

such a state produces singular densities with infinite radii since the state is completely delocalized.

Therefore, the Breit frame Fourier transform does not give a spatial density. On the other hand, Eq. (12) does give a valid

spatial density, but this density does not correspond strictly to internal structure of the hadron. At fixed x0, it is not possible to

prepare a completely localized wave function in coordinate space, so wave function spread will always be present in this density.

It is thus preferable to use the light front density of Eq. (7) to describe hadron structure, since wave function spread can be

factored out—and in some cases, eliminated entirely.

III. THE LIGHT FRONT STRESS TENSOR
Identifying classical mechanical concepts such as pressure and shear forces in inherently quantum mechanical systems such

as hadrons is di�cult. In practice, “pressure” is identified within hadrons by comparing matrix elements of the EMT for hadrons

states to a continuum EMT. The matrix element is typically evaluated using plane wave states in the Breit frame, with P = 0, so

that the stress tensor—which is identified with the spatial components of the EMT—does not depend on the bulk velocity of the

hadron.
However, we have established in Sec. II that there is no connection between Breit frame matrix elements and actual spatial

densities. Moreover, a properly defined spatial density involves an integral over all values of the transverse momentum P?,

meaning that the stress tensor contains contributions from the bulk flow of energy and momentum, rather than just forces internal

to the hadron. It is necessary to isolate the part of the stress tensor corresponding strictly to internal forces, which we call the

“pure stress tensor.” We shall proceed to consider how this can be done.

Since the classical EMT is symmetric, we use the symmetric, Belinfante-improved EMT [34] on the field theoretic side of the

comparison.

A. Continuum EMT on the light front
Since spatial densities encoding internal structure of hadrons can only be defined at equal light front time, with x� integrated

out, we shall begin by considering the general properties of a classical EMT under these conditions. The set of Poincaré

transformations that leave fixed-x+ slices invariant form a Galilean subgroup [35, 36], with the special property that the + and

transverse components of transformed tensors do not depend on the � components in the original frame.

It is therefore prudent to proceed considering only the +, 1, 2 components of the EMT and of other tensors. We thus proceed

with the inherently (2 + 1)-dimensional quantity:

T µ⌫
LF (x

+,x?) =
Z

dx�T µ⌫(x+, x�,x?) , : µ, ⌫ = +, 1, 2 .
(13)

The EMT is made up of two pieces: a flow tensor V µ⌫
LF (x+,x?) that encodes the local motion of the continuum material, and

the pure stress tensor Sµ⌫
LF(x+,x?) that encodes mechanical forces:

T µ⌫
LF (x

+,x?) = V µ⌫
LF (x+,x?) + Sµ⌫

LF(x
+,x?) .

(14)

The pure stress tensor evaluated at x? is what the EMT evaluates to in a frame that’s comoving with the material at x? [37].

To better understand the flow and pure stress tensors, let us first consider a small element of material at transverse rest1. By

Noether’s theorem, the EMT components T+⌫
LF (x+,x?) encode the densities of the momentum components P ⌫, which for the

material at transverse rest gives T +i
LF(x+,x?) = 0. On the other hand, the light front energy density is given by:"(x+,x?) = T ++

LF (x+,x?) .

(15)1 By “transverse rest,” we mean that once x� is integrated out, the net momentum in the transverse plane is zero.

V. DISCUSSION AND CONCLUSIONS

A simple, Fourier transform relationship between form

factors and spatial distributio
ns of the expectation values o

f

local operators was developed during the study of non-

relativistic systems like atoms in the early days of quantum

mechanics. Although Burkardt [7] and Miller [8] pointed

out that this relationship fails
in the case of the nucleon, the

relationship seems to have entered the folklore of particle

physics without careful consideration of whether it is

accurate for systems whose size is of the same order as

their Compton wavelength. Miller, in particular, has

emphasized that the connection fails for the nucleon [8]

and has recently reemphasized that it fails for the famous

assertion that the mean squared charge radius of the
proton

is given by −6G0
Eð0Þ [9]. Defining a quantity such as

hρ̂ðrÞiN requires one to localize the nucleon and doing so

generates localization dependent contributions that
invali-

date the Fourier transform relation between form factors

and local density distribution
s. I have explored this effect i

n

the simple case for the charge density distribution of a

spinless system with a Gaussian form factor. The problem

is not special to the charge de
nsity operator nor to a spinles

s

hadron nor to the assumption of a Gaussian form factor.

Instead this is a general problem that afflicts attempts to

extract spatial distributions of local properties of any

system that is not much larger than its Compton wave-

length. The problem is quite fundamental, since it origi-

nates in the interplay between
the uncertainty principle and

relativity.
One can, of course, construc

t a function of r by Fourier

transforming the form factor of a local operator, bu
t in the

case of the nucleon or other light hadrons, this is of

uncertain value and should not be considered an accurate

representation of the “actual” spatial distribution of the

operator matrix element, which cannot be defined inde-

pendent of the way in which the hadronic system was

localized.
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FIG. 4. (a) Radial charge density distributions, 4πr
2ρðrÞ, in a

Gaussian model for the deuteron. The solid curve is the naive

radial charge density distribution of Eq. (21). The dotted curves

are the radial charge density d
istributions for a deuteron loc

alized

with R ¼ 0.2, 0.5 and 1.0 fm. (b) The fractional difference

between the naive and localized charge density distributions for

R ¼ 0.3 fm and R ¼ 0.5 fm and R ¼ 0.7 fm.
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Possible paths forward

1 Just give up on densities.
Experiments access momentum picture; maybe this is good enough.
But quitters never win.

2 Make up a formula.
“Breit frame Fourier transform”Not really valid, but has correct non-relativistic limit.Problem: one might take too seriously; not a literal picture of hadron structure.3 Use light front coordinates

Shu✏es all relativistic e↵ects into one dimension.Left with literal 2D picture with actual densities.Relativistically valid

A. Freese (ANL)
Light front densities

February 24, 2021 23 / 41
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We showed recently /Panteleeva, MVP ’21/  that 3D Breit frame and 2D light front force distribution are equivalent 

     as they are related to each other by invertible Abel transformation.  Any result in Breit frame (stability conditions,      

    experimental data, model calculations, etc.) can be unambiguously transformed into corresponding result for 

    light-front force distributions (and vice versa)


Note that this contribution does not change the total charge
of the system, and hence just redistributes it in space. In
particular, it induces a dipolar distortion of the charge
distribution when the moving nucleon is transversely
polarized [14]. A similar phenomenon explains why the
position of the center of inertia shifts sideways in a
transversely polarized moving system [29,30].
The second and more subtle effect comes from the

Wigner rotation. It is a consequence of the noncommuta-
tivity of Lorentz boosts which makes polarization an
observer-dependent concept. A given polarization in some
frame appears rotated in another, explaining why simple
relations among 3D parton distributions arise in spherically
symmetric models [31]. Similarly, the BF charge (current)
distribution is spin independent (dependent) in terms
of the BF polarization, but appears to receive a spin-
dependent (spin-independent) contribution when described
in terms of the polarization defined by an observer in
another frame.
Let us now focus on the unpolarized part of the EF

charge distribution,

ρEðb;PzÞ≡ 1

2
Tr½J0EFðb⊥;PzÞ$; ð18Þ

where the trace acts in polarization space. Since there is no
preferred direction in the transverse plane, ρE is axially
symmetric and hence written as a function of the impact
parameter b ¼ jb⊥j. Using explicit expressions for the
Dirac bilinears [32], we find for the convection and
magnetization contributions

ρXEðb;PzÞ ¼
Z

∞

0

dQ
2π

QJ0ðQbÞρ̃XEðQ;PzÞ; ð19Þ

where J0 is a cylindrical Bessel function and

ρ̃convE ðQ;PzÞ ¼
P0 þMð1þ τÞ
ðP0 þMÞð1þ τÞ

GEðQ2Þ;

ρ̃magn
E ðQ;PzÞ ¼

τP2
z

P0ðP0 þMÞð1þ τÞ
GMðQ2Þ; ð20Þ

with ρ̃E ¼ ρ̃convE þ ρ̃magn
E and P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ τÞ þ P2

z

p
. In

particular, we see in momentum space why the BF
description ρ̃EðQ; 0Þ ¼ GEðQ2Þ=

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
turns into the

IMF description ρ̃EðQ;∞Þ ¼ F1ðQ2Þ: It is essentially
due to a magnetization contribution arising from the
combination of a Wigner rotation and a mixing of the
four-current components under Lorentz boosts [33,34]. A
similar analysis for the magnetization shows how
GMðQ2Þ=

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
in the BF turns into F2ðQ2Þ in the

IMF. Increasing the spin of the target will just increase
the complexity of these effects [35–37].

In Figs. 2 and 3 we show how the unpolarized 2D charge
quasidensities of the nucleons evolve with the target
momentum Pz, using the phenomenological parametriza-
tion from Ref. [26]. A decomposition into convection and
magnetization contributions reveals that the Pz dependence
essentially arises from the latter. The mild changes in the
convection contribution are entirely due to Wigner rotation
effects. The same effects explain why a magnetization

FIG. 2. Unpolarized proton 2D charge quasidensity as a
function of Pz (lower panel), decomposed into convection and
magnetization contributions (upper panels). In the Breit or rest
frame Pz ¼ 0, the charge distribution is purely convective. As Pz
increases, a large contribution induced by the rest-frame mag-
netization progressively concentrates the charge distribution
toward the center. Based on the parametrization from Ref. [26].

FIG. 3. Unpolarized neutron 2D charge quasidensity as a
function of Pz (lower panel), decomposed into convection and
magnetization contributions (upper panels). In the Breit or rest
frame Pz ¼ 0, the charge distribution is purely convective. As Pz
increases, a large contribution induced by the rest-frame mag-
netization progressively pushes the positive charges away from
the center. Based on the parametrization from Ref. [26].

PHYSICAL REVIEW LETTERS 125, 232002 (2020)
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Everything can be reformulated using the phase space Wigner picture

Тhe distortions appearing in the relativistic distributions for a moving target 

are entirely due to relativistic kinematical effects associated with spin. 

For e.m. ffs fully relativistic and model independent interpretation in terms of charge distributions

   can be given within a phase space approach  /Lorce, PRL125 (2020), H-Ch Kim, J-Y Kim 2106.10986/.

   Analogous interpretation of EMT ffs is possible.

One can define static EMT in IMF= light cone pressure and shear forces. 

    for charge distributions see /M. Burkardt ’00, G. A. Miller ’07/ for pressures /Lorce et al. ’18,  Freese, Miller ’21/

Different views of force distributions 

 Here we prefer to work with Breit frame force distributions for which we can use our “rest frame intuition”. 

 Any statement about the Breit frame distributions can be unambiguously translated to the language of light-front           
distributions (and vice versa)



Different ways of the interpreting the form factors can be regarded as different choices of schemes.  To 
my taste 3D Breit force distributions are more intuitive and physics appealing.
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Nucleon gravitational form factors from instantons: forces between quark and gluon
subsystems

Maxim V. Polyakov1, 2 and Hyeon-Dong Son2

1Petersburg Nuclear Physics Institute, Gatchina, 188300, St. Petersburg, Russia
2Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Using the instanton picture of the QCD vacuum we compute the nucleon c̄Q(t) form factor of the
quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation
of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon.
Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon.
We show that this form factor is parametrically small in the instanton packing fraction. Numerically
we obtain for the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point
of ⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark and
gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from
side of gluon subsystem squeeze the quark subsystem – they are compression forces. Additionally,
the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture. We estimate that the
contribution of c̄Q(t) to the pressure distribution inside the nucleon is in the range of 1�20% relative
to the contribution of the quark D-term.

INTRODUCTION

The hadron form factors of energy momentum tensor (EMT) were introduced in 1960’s in Refs. [1, 2] to study the
behaviour of hadrons in curved space-time and to obtain the basic mechanical properties of them. Nowadays the
interest to EMT form factors increased as they can be, in principle, accessed in hard exclusive processes without
invoking very weak gravitational forces and in this way to study in details the mechanical properties of the hadrons.

The symmetric QCD energy-momentum tensor operators for quark and gluon can be obtained by varying the QCD
action in respect to the metric of curved space-time, it has the following form

T
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1

4
 q
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⌫ and the SU(3) color group generators satisfy the algebra [ta, tb] = i f

abc
t
c and are

normalized as tr (tatb) = 1
2 �

ab. The total EMT is conserved

@
µ
Tµ⌫ = 0, Tµ⌫ =

X

q

T
q
µ⌫ + T

g
µ⌫ . (3)

The nucleon matrix element of individual pieces of EMT operator can be parameterized as the following expression,

hp0, s0|T a
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i(p0�p)x (4)

We introduced the notation a{µb⌫} = aµb⌫ + a⌫bµ for simplicity, as well as P = (p0 + p)/2, � = p
0 � p. The spinors

satisfy the normalization condition, ū(p, s)u(p, s) = 2MN where MN is the nucleon mass. Due to EMT conservation,
Eq. (3), the constraint

P
a c̄

a(t) = 0 holds
The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,... c̄

a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄

Q(0) = �A
Q(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not

true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].

Kobzarev, Okun ’1962 , Pagels ‘1966

EMT form factors for the nucleon

The name  “D-term” is rather technical, it can be traced back to more or less accidental notations chosen 

in /Weiss, MVP ’99/. Nowadays, given more clear physics meaning of this quantity, we might call this term as

 “Druck-term” derived from German word for pressure


Nucleon gravitational form factors from instantons: forces between quark and gluon
subsystems

Maxim V. Polyakov1, 2 and Hyeon-Dong Son2
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Using the instanton picture of the QCD vacuum we compute the nucleon c̄Q(t) form factor of the
quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation
of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon.
Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon.
We show that this form factor is parametrically small in the instanton packing fraction. Numerically
we obtain for the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point
of ⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark and
gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from
side of gluon subsystem squeeze the quark subsystem – they are compression forces. Additionally,
the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture. We estimate that the
contribution of c̄Q(t) to the pressure distribution inside the nucleon is in the range of 1�20% relative
to the contribution of the quark D-term.

INTRODUCTION

The hadron form factors of energy momentum tensor (EMT) were introduced in 1960’s in Refs. [1, 2] to study the
behaviour of hadrons in curved space-time and to obtain the basic mechanical properties of them. Nowadays the
interest to EMT form factors increased as they can be, in principle, accessed in hard exclusive processes without
invoking very weak gravitational forces and in this way to study in details the mechanical properties of the hadrons.

The symmetric QCD energy-momentum tensor operators for quark and gluon can be obtained by varying the QCD
action in respect to the metric of curved space-time, it has the following form
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c and are

normalized as tr (tatb) = 1
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ab. The total EMT is conserved

@
µ
Tµ⌫ = 0, Tµ⌫ =

X
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T
q
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The nucleon matrix element of individual pieces of EMT operator can be parameterized as the following expression,

hp0, s0|T a
µ⌫(x)|p, si = ū

0

A

a(t)
PµP⌫

MN
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a(t)
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�
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We introduced the notation a{µb⌫} = aµb⌫ + a⌫bµ for simplicity, as well as P = (p0 + p)/2, � = p
0 � p. The spinors

satisfy the normalization condition, ū(p, s)u(p, s) = 2MN where MN is the nucleon mass. Due to EMT conservation,
Eq. (3), the constraint

P
a c̄

a(t) = 0 holds
The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,... c̄

a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄

Q(0) = �A
Q(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not

true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].

Compare with electromagnetic FFs
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MVP ‘2003

Interaction of the nucleon with gravity  

O. Teryaev called it nucleon “cosmological term” 

a) related to forces between quark and gluon subsystems /HDSon,MVP’18/
b) contribute to “gluon” and “quark” parts of  energy density (mass 

decomposition) /Lorce ’18/

c) instanton contribution to nucleon                          /HDSon,MVP’18/

d)              for Goldstone bosons /Schweitzer, MVP ‘19/

a = g,Q (gluon or quark parts)

�pa = ��⇢aE

c̄q(0) ⇡ +1.4 10�2

c̄q(0) = 0

(dFi = TijdSj)
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F1(0) = 1
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GM (0) = 1 + 
  for e.m. FFs we have anomalous magnetic moment 

  NO anomalous gravitomagnetic moment /Kobzarev, Okun ’1962/ , Pagels ‘1966)



Three global fundamental mechanical “charges”of nucleon: M, J, D
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M, J, D are independent of way we localise hadron

Variations of (00) and (0l) components of metric

can be such that the Riemann tensor =0, e.g. just

going to non-inertial reference frame

That is why we can measure the mass by the shape 

of particle track in external em field, or Earth 

angular velocity with help of Foucault pendulum

Variation of (ik) components necessarily must lead 

to non-zero Riemann tensor =“true gravity” 

Probably that is why D-term, being as fundamental 

as M & J, escaped attention of the community

D-term is a global and fundamental quantity related to the distribution of strong forces 

(pressure and shear) inside a hadron

MVP ‘2003

Two the most important particle properties:

Unexplored property:

MVP ‘2003



last global unknown: How do we learn about hadrons?

|N〉 = strong interaction particle. Use other forces to probe it!

em: ∂µJ
µ
em = 0 〈N ′|Jµ

em|N〉 −→ Q, µ, . . .

weak: PCAC 〈N ′|Jµ
weak|N〉 −→ gA, gp, . . .

gravity: ∂µT
µν
grav = 0 〈N ′|Tµν

grav|N〉 −→ M , J, D, . . .

global properties: Qprot = 1.602176487(40)× 10−19C
µprot = 2.792847356(23)µN

gA = 1.2694(28)
gp = 8.06(0.55)
M = 938.272013(23)MeV
J = 1

2
D = ??

and more:
t-dependence . . . . . .
parton structure, etc . . .

↪→ D = “last” global unknown

which value does it have?

what does it mean?

The Druck-term 

unexplored

unexplored



Effective chiral action for nucleon and pions in external grav. field
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Contains known LECs /UG Meissner et al. ’00/

D(0)

mN
= c8 +

g2A
16⇡F 2

M⇡ +
�3g2A/mN + 2 (�4c1 + c2 + 2c3)
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New LECs: interaction with curvature

/Alharazin, Djukanovic, Gegelia, MVP ’20/

based on /Alharazin, Djukanovic, Gegelia, MVP ’20/

Chiral expansion of D-term

/Alharazin, Djukanovic, Gegelia, MVP ’20/Computed previously /Belitsky, XD Ji ’02/

Computed previously /Diehl, Manashov, Schafer ’06/

we corrected their mistake. New result might be important

to revisit chiral extrapolation of lattice data!

D-term is related to interaction with space-time curvature

3

TABLE I: The values of the low energy constants obtained in the analysis of Ref. [13]. The constants ci are in units of GeV�1.
The statistical and systematic uncertainties are shown in the first and the second brackets, respectively.

c1 c2 c3

-1.22(2)(2) 3.58(3)(6) -6.04(2)(9)

coupling constant, F = 0.092?GeV is the pion decay constant, and the low energy constants c1,2,3 are the couplings in

the standard chiral e↵ective Lagrangian of pions and nucleons of the order two [14, 15]. The values of these constants

c1,2,3 can be extracted from the data on ⇡N scattering - in what follows we use the values obtained in recent analysis

of the ⇡N scattering in manifestly Lorentz invariant baryon chiral perturbation theory [13], the values of c1,2,3 are

summarised in Table I.

The integral in (10) for the imaginary part of the form factor specified in Eq. (11) can be computed analytically

if the chiral limit is considered. The result for the bound of Eq. (10) takes the following form:

1

m
D

chiral lim
= c8  � 3g
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✓
1

R3
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◆
, (12)

where m = 0.8828± 0.004 GeV is the nucleon mass in the chiral limit [16]. Now the question is which value of R0 to

choose so that the O(1/R
3
0) corrections can be neglected in Eq. (12)? For that, following Ref. [17], we computed the

function eD(r) in the Skyrme model and checked that its leading large r asymptotic (⇠ 1/r
4
) is set at the distances

about r = 1.5 fm. This value is about two time larger than the mechanical radius of the nucleon estimated in the

chiral soliton model [5]. In what follows we shall use R0 = 1.5 fm as the lowest possible value of this parameter in the

inequalities (10), (12).

Using the values of the low-energy constants from Table I we obtain the upper bounds on c8 shown in Table II in

dependence on the parameter R0. From the Table we see that c8 should be negative and its absolute value is bound

TABLE II: Low bounds on the absolute value of LEC c8 obtained with Eq. (12)

R0 [fm] 1.5 2 2.5 3

�c8 [GeV�1] � 1.5 � 1.0 � 0.7 � 0.5

from below by a rather sizeable value. The main uncertainty in our analysis is due to the choice of the parameter

R0, to be on the safe side we choose R0 = 2 fm for our final estimation c8  �1.0 GeV
�1

.

For non-zero pion mass the integral in Eq. (10) can be computed numerically. The resulting bounds on the D-

term are shown in Table III. We note that the obtained bound for the physical pion mass is fulfilled for all model

calculations known to us, as well as for the extraction of the D-term from DVCS data [11].

TABLE III: Low bounds on the absolute value of the D-term at di↵erent values of the pion mass obtained with Eq. (10)

R0 [fm] 1.5 2 2.5 3

�D, M⇡ = 0 � 1.39 � 0.91 � 0.66 � 0.52

�D, M⇡ = Mphys
⇡ � 0.49 � 0.20 � 0.08 � 0.04

�D, M⇡ = 2Mphys
⇡ � 0.11 � 0.02 � 0.005 � 0.001

3.To summarise, we used imaginary parts of the nucleon gravitational form factors, obtained in chiral e↵ective field

theory, in dispersive representations and obtained a model independent inequality for the value of the gravitational

D-form factor at zero momentum transfer (D-term). The obtained inequality leads to a conservative bound on the

D-term in the chiral limit D  �0.9. This bound implies the restriction on the low-energy constant c8 of the e↵ective

chiral action for nucleons and pions in the presence of an external gravitational field, c8  �1.0 GeV
�1

. For the

physical pion mass we obtained a model independent bound D  �0.2.



Effective chiral action for nucleon and pions in external grav. field
based on /Alharazin, Djukanovic, Gegelia, MVP ’20/

2

the terms containing information about the mass and the spin (the first line in Eq. (3)) are non-zero also in the

Minkowski space-time. Clearly, to access the mass and the spin it is enough to make a metric variation with zero

Riemann tensor (just choosing the non-inertial reference frame), whereas the D-term can be obtained only by the

variation with non-trivial curvature.

The values of the nucleon D-term and of the low-energy constant c8 are a priori unknown. However, as they are

related to distribution of internal forces in the nucleon, these quantities are restricted by the mechanical stability

conditions, see discussions in Refs. [5, 8, 9]. In particular, the stability conditions imply that the nucleon D-term (and

hence the constant c8) should be negative [5, 8, 9]. The first experimental information on the nucleon D-term [10–12]

indicates that D < 0. The model and the QCD lattice calculations also provide with negative values of the nucleon

D-term, see the review in Ref. [5]. In the present paper we strengthen the stability bound D < 0 using additional

information on the chiral expansion of the nucleon gravitational form factors obtained in Ref. [6].

2.To have notations coherent with the review [5] we introduce the gravitational D(t) form factor by rescaling the

form factor in Eq. (1) as: D̄(t) = mND(t). The distributions of the pressure p(r) and shear force s(r) can be

obtained in terms of D(t) through [4, 5]:
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In Refs. [5, 8, 9] it was argued that for the stability of the mechanical system the pressure and shear forces should

satisfy the following inequality:

2

3
s(r) + p(r) � 0 . (6)

Using Eq. (5) we see that this stability condition equivalently can written as:

d

dr

eD(r) � 0, (7)

implying that the function eD(r) is a monotonically increasing function. For large distance eD(r) ! 0, therefore one

of the consequences of the stability inequality (7) is the condition:

eD(r)  0 . (8)

For negatively defined function eD(r) we can write the following relation:

D = D(0) =

Z
d
3r eD(r) 

Z

r�R0

d
3r eD(r), (9)

for an arbitrary distance parameter R0. For large enough R0, the right hand side of above equation can be computed

in the chiral e↵ective field theory. For that, by assuming the dispersion relation for the form factor D(t) without

subtraction, one can easily obtain:
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The large R0 behaviour of the integral in this equation is governed by the small t expansion of ImD(t + i0). The

latter can be obtained using the chiral e↵ective field theory. Such expansion has been performed in Ref. [6] to the

fourth order of chiral expansion. The result for the imaginary part of D(t) has the following form:
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This expression is valid for 4M
2
⇡  t ⌧ 4m

2
N , in its derivation we systematically neglected terms of the order

t/(4m
2
N ), however the terms of the order

p
t/mN were kept. In the above equation gA = 1.27? is the nucleon axial

Im part of D(t). Is useful for dispersion relations analysis 

E. g. strong forces in nucleon periphery (chiral limit example): 

AðtÞ ¼ 1 −
2c9
mN

tþ 3g2A
512F2mN

ð−tÞ32 − ðc2mN − 10g2AÞ
320π2F2m2

N
t2 ln

!
−t
m2

N

"
−
ð25g2Að12c9mN − 7Þ − 62c2mNÞ

9600π2F2m2
N

t2 þOðt52Þ;

JðtÞ ¼ 1

2
−

c9
mN

t −
g2A

64π2F2
t ln

!
−t
m2

N

"
þ g2Að12c9mN − 7Þ

192π2F2
t −

3g2A
512F2mN

ð−tÞ32 þOðt2Þ;

DðtÞ ¼ mNc8 þ
3g2AmN

128F2

ffiffiffiffiffi
−t

p
−
ð5g2A þ 4ðc2 þ 5c3ÞmNÞ

160π2F2
t ln

!
−t
m2

N

"

þ ð5g2Að40c9mN þ 15c8mN þ 28Þ þ 94c2mN þ 200c3mNÞ
2400π2F2

tþOðt32Þ: ð22Þ

Performing 3D Fourier transformation of these expressions we obtain the large distance behavior of the spatial distributions
in the parametrically wide region 1=Λstrong ≪ r ≪ 1=Mπ:

ρEðrÞ ¼
9g2A

64π2F2

1

r6
−
3ð10g2A=mN þ ðc2 þ 10c3ÞÞ

16π3F2

1

r7
þO

!
1

r8

"
; ð23Þ

ρJðrÞ ¼
5g2A

64π3F2

1

r5
−

9g2A
64π2F2mN

1

r6
þO

!
1

r7

"
; ð24Þ

D̃ðrÞ ¼ −
3g2AmN

128π2F2

1

r4
þ 3ð5g2A þ 4ðc2 þ 5c3ÞmNÞ

160π3F2

1

r5
þO

!
1

r6

"
: ð25Þ

Using Eq. (25) in Eq. (21) we obtain the large distance behavior of the pressure and shear force distributions:

pðrÞ ¼ −
3g2A

64π2F2

1

r6
þ ð5g2A=mN þ 4ðc2 þ 5c3ÞÞ

16π3F2

1

r7
þO

!
1

r8

"
;

sðrÞ ¼ 9g2A
64π2F2

1

r6
−
21ð5g2A=mN þ 4ðc2 þ 5c3ÞÞ

128π3F2

1

r7
þO

!
1

r8

"
: ð26Þ

The leading terms (∼1=r6) in Eq. (26) have been obtained
for the first time in Ref. [48] in the framework of the soliton
picture of the nucleon. The obtained large distance asymp-
totics can be useful for the analysis of lattice data on GFFs
of the nucleon and for deriving general constraints on the
GFFs. To illustrate the latter point we note that the large
distance behavior of the energy density, given by Eq. (23),
and of pressure and the shear force distributions, specified in
Eq. (26), satisfy the general stability conditions—ρEðrÞ > 0
and 2

3 sðrÞ þ pðrÞ > 0, see discussion in Ref. [5].
Furthermore with help of expression for JðtÞ in Eq. (22)

we can obtain large impact-parameter behavior of the
distributions of Belinfante-improved total angular momen-
tum. The latter is defined as [46]:

hJBeliðb⊥Þ ¼ −
1

2
b⊥

∂
∂b⊥

Z
d2Δ⊥
ð2πÞ2

e−ib⊥Δ⊥Jð−Δ⊥2Þ: ð27Þ

Performing the 2D Fourier transformation we obtain the
large b⊥ asymptotics of hJBeliðb⊥Þ as:

hJBeliðb⊥Þ ¼
g2A

16π3F2

1

b4⊥
−

135g2A
2048πF2mN

1

b5⊥
þO

!
1

b6⊥

"
:

ð28Þ

This model-independent asymptotics is valid in the para-
metrically wide region 1=Λstrong ≪ b⊥ ≪ 1=Mπ and can be

CHIRAL THEORY OF NUCLEONS AND PIONS IN THE … PHYS. REV. D 102, 076023 (2020)

076023-7

Note that at nucleon periphery
dFr

dSr
=

2

3
s(r) + p(r) � 0

Many other applications:

- Soft hadron reactions in grav. field, e.g. pion gravitoproduction

- Maybe relevant for physics of LIGO mergers

- Low energy gravitoproduction can be probed in a lab,  e.g 


        non-diagonal DVCS (ongoing analysis at CLAS12, plans for EIC)

       ……………..

Useful for derivation general stability 

conditions and inequalities for strong 

forces.

Also it is important to describe large

distance interaction of quarkonia with 

the nucleon.Important for hadrocha-

charmonium picture of LHCb pentas.

                                     /Eides, Petrov, MVP ’15/



Total p(r) and s(r), normal and tangential forces, stability conditions 

The force acting on the area element d~S = dSr~er + dS✓~e✓ + dS�~e�

dFr

dSr
=

2

3
s(r) + p(r),

dF✓

dS✓
=

dF�

dS�
= �1

3
s(r) + p(r).

Normal forces Tangential forces

Eigenvalues of stress tensor

Goeke et al.  ‘2007

Stability condition

(spatial trace of EMT does not

  contribute to the mass)

dFr

dSr
=

2

3
s(r) + p(r) � 0

Z
d3r p(r) = 0 von Laue ‘1911

Local stability condition

(Conjecture /Perevalova, Schweitzer, MVP’ 17/
similar conjectures in astrophysics /Zeldovich, Novikov’ 62, Herrera’ 98/)

D-term D(0) = � 4m

15

Z
d3r r2 s(r) = m

Z
d3r r2 p(r)  0

All calculations of the D-term in various approaches give negative value for it.

For some systems the D-term is fixed by general principles:

D(0) = �1 Goldstone bosons (pions etc.) Novikov, Shifman ‘1980

Voloshin, Zakharov’ 1980

Free fermions Donoghue et al.’ 02, Hudson, Schweitzer  ‘17D(0) = 0
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The von Laue condition can be proven in exactly the same way also in the Skyrme model [180] and bag model [197].
These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
QCD in the large-Nc limit [198, 199]. Thus, the connection of the von Laue condition and the virial theorem is of
more general character than the respective models: it holds in the large-Nc limit in QCD. It is not known whether a
connection of the von Laue condition and extrema of the action can be established also in QCD with finite Nc.
It is interesting to investigate what happens when one increases the value of the current quark masses (as it was

routinely done until recently in lattice QCD studies). In this case the hadron masses increase, while their sizes decrease.
For the EMT densities it has the following implications: the energy density in the center of the nucleon increases and
so does the pressure, see Fig. 5. This implies a more negative D-term [178].
Modifications of the D-term of the nucleon in nuclear matter were studied in [200, 201]. As the density of the

nuclear medium increases, the energy density in the center of the nucleon bound in the medium and the pressure both
decrease. The size of the system, however, grows and the D-term becomes more negative [200, 201].

Chiral perturbation theory cannot predict the value of the nucleon D-term, but it predicts its m⇡-dependence and
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Figure 4. EMT densities of the nucleon from the chiral quark soliton [126]. (a) Energy density T00(r), (b) densities p(r) and
s(r) of the stress tensor Tij(r), and (c) 4⇡r2p(r) where the shaded areas above and below the x-axis are exactly equal to each
other which demonstrates how the von Laue condition (31) is realized. (d) The integrand of the D-term is proportional to r4p(r)
and yields D < 0 upon integration. The negative sign of D emerges as a natural consequence of the “stability pattern” [126].
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m⇡ of the order of magnitude of the kaon mass. (a) Energy density normalized as 4⇡r2T00(r)/m such that the curves integrate
to unity, and (b) r2p(r) which integrates to zero. (c) The pressure in the center as function of the energy density in the center.
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The von Laue condition can be proven in exactly the same way also in the Skyrme model [180] and bag model [197].
These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
QCD in the large-Nc limit [198, 199]. Thus, the connection of the von Laue condition and the virial theorem is of
more general character than the respective models: it holds in the large-Nc limit in QCD. It is not known whether a
connection of the von Laue condition and extrema of the action can be established also in QCD with finite Nc.
It is interesting to investigate what happens when one increases the value of the current quark masses (as it was

routinely done until recently in lattice QCD studies). In this case the hadron masses increase, while their sizes decrease.
For the EMT densities it has the following implications: the energy density in the center of the nucleon increases and
so does the pressure, see Fig. 5. This implies a more negative D-term [178].
Modifications of the D-term of the nucleon in nuclear matter were studied in [200, 201]. As the density of the

nuclear medium increases, the energy density in the center of the nucleon bound in the medium and the pressure both
decrease. The size of the system, however, grows and the D-term becomes more negative [200, 201].

Chiral perturbation theory cannot predict the value of the nucleon D-term, but it predicts its m⇡-dependence and
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other which demonstrates how the von Laue condition (31) is realized. (d) The integrand of the D-term is proportional to r4p(r)
and yields D < 0 upon integration. The negative sign of D emerges as a natural consequence of the “stability pattern” [126].
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(dFi = TijdSj)

D(0) = �4⇡

3
� MA R4

A ⇠ �A7/3 Heavy nuclei  MVP  ‘2003

Surface tension coeff in Weizsäcker mass formula ~ 1 MeV/fm^2



numerical results for the normal and tangential force fields
as functions of r, which are illustrated in Fig. 6. Concerning
the normal force fields in the nucleon and Σc, which
are drawn in the left and right upper panels of Fig. 6,
respectively, the level-quark contributions are positive

definite whereas the Dirac-continuum parts are negative
definite. However, the magnitude of the level parts is
stronger than that of the Dirac-continuum parts, which
leads to the fact that the normal force fields are positive
definite. This implies that Fr are directed outward. On the

FIG. 9. In the upper panel, the infinitesimal force fields dFðr;θ;ϕÞ defined in Eq. (21) are visualized as the arrows, which will be used in
the 3D visualization of the strong force fields in Figs. 10, 11, and the lower panel of Fig. 9. In the lower left and right panels, the 3D
visualization of the strong force fields (F) for the nucleon and Σc are, respectively, illustrated.
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(dFi = TijdSj)

For a liquid drop

p(r) = p0✓(r �R)� p0R

3
�(r �R), s(r) = ��(r �R),

p0 = 2�/R Relation between pressure in t

he drop and the surface tension /Lord Kelvin ‘1858/

dFr

dSr
=

2

3
s(r) + p(r) = p0✓(r �R)Hence for a liquid drop

<latexit sha1_base64="yPZi/x85jNUaeXTy71bWRZGCIsQ="></latexit>

dFr =

✓
2

3
s(r) + p(r)

◆
dSr

<latexit sha1_base64="i7DT2v4E61ksM8FSoHxH85eRmRk="></latexit>

dF� =

✓
�1

3
s(r) + p(r)

◆
dS�

(Landau & Lifshitz vol. 7)
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Mechanical radius and surface tension 

dFr

dSr
=

2

3
s(r) + p(r) � 0

Positive quantity - allows to define the mechanical radius

hr2imech =

R
d3r r2

⇥
2
3s(r) + p(r)

⇤
R
d3r

⇥
2
3s(r) + p(r)

⇤ =
6D(0)

R 0
�1 dt D(t)

Note that mech radius is NOT the slope of D(t) 

For a liquid drop

p(r) = p0✓(r �R)� p0R

3
�(r �R), s(r) = ��(r �R),

p0 = 2�/R Relation between pressure in the drop and the surface

tension Lord Kelvin ‘1858

p(0) =

Z 1

0
dr

2s(r)

r

dFr

dSr
=

2

3
s(r) + p(r) = p0✓(r �R)Hence for a liquid drop

mechanical radius has the intuitive clear value

For general systems one can obtain the generalisation of the Kelvin relation

s(r) can be called surface tension for the system

p
s
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Mechanical radius and surface tension 

The surface tension energy
Z

d3r s(r) = � 3

8m

Z 0

�1
dt D(t)

This energy must be less than the total energy of the system
Z

d3r s(r)  m this implies

hr2imech � �9D/(4m2)
we checked that for stable systems (stable solitons) is always satisfied.

Violated for unstable systems!

hr2imech ⇡ 0.75 hr2icharge in chiral soliton picture of the nucleon

Shear forces distribution s(r) is important for forming the shape of the hadron. 

For s(r)=0 the hadron corresponds to homogeneous, isotropic fluid. Hence has infinite

mechanical radius.  Non-zero s(r) is responsible for hadron structure formation!

Interestingly the pressure anisotropy (shear forces distribution) plays an essential role in 
astrophysics, see the review [Herrera:1997plx] on the role of pressure  asymmetry  for self-
gravitating systems in astrophysics and cosmology. 

<latexit sha1_base64="Ec9n2LhwPiQ1m9djvcwh6TRJjQk=">AAACEHicdVDLSgMxFM3UV62vUZdugkVaEUqm1VoXQtGNywrWFjpDyaSZNjSTGZKMUEo/wY2/4saFIm5duvNvTB9CFT0QOPece7m5x485UxqhTyu1sLi0vJJezaytb2xu2ds7typKJKF1EvFINn2sKGeC1jXTnDZjSXHoc9rw+5djv3FHpWKRuNGDmHoh7goWMIK1kdp2Dsa5vDw8cgOJCSyWXKjmawmVqeA5attZVDhBzlkZQVRAE0xIxSk50JkpWTBDrW1/uJ2IJCEVmnCsVMtBsfaGWGpGOB1l3ETRGJM+7tKWoQKHVHnDyUEjeGCUDgwiaZ7QcKLOTwxxqNQg9E1niHVP/fbG4l9eK9FBxRsyESeaCjJdFCQc6giO04EdJinRfGAIJpKZv0LSwyYKbTLMmBC+L4X/k9tiwSkX0PVxtnoxiyMN9sA+yAMHnIIquAI1UAcE3INH8AxerAfryXq13qatKWs2swt+wHr/AoAhmR0=</latexit>

p0(r) +
2

3
s0(r) +

2

r
s(r) = 0 Equilibrium equation (conservation of EMT)



Size of the forces in the nucleon. Comparison with confinement 
forces 
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nucleon – they are distinguished by the chirality of the tangential forces. It would be interesting to understand at the
microscopic level the physical reasons for the emergence of these two di↵erent regions.
In the lattice QCD study [184] a hybrid approach based on domain wall valence quarks with 2 + 1 flavors of

improved staggered sea quarks was used. The range 0.1GeV2
< �t < 1.2GeV2 was covered for pion masses from

760MeV down to 350MeV. Depending on the chiral extrapolation method the following values were obtained which
do not include disconnected diagrams: D

Q = �1.07 ± 0.25 using covariant baryon chiral perturbation theory, and
D

Q = �1.68± 0.22 using heavy baryon chiral perturbation theory at the physical value of the pion mass in MS scheme
at µ2 = 4GeV2. The quark contribution to the D-term from dispersion relations [185] refers to the same µ

2 and is in
the range �1.54 . D

Q . �1.27 in good agreement with the lattice result. Considering that the results from chiral
models (70) show the total D-term, the dispersion relation and lattice result agree well with these models [178, 180].
The nucleon EMT form factors A(t) and B(t) were also studied in approaches based on light front wave functions

such as AdS/QCD models or spectator models [186–191, 194–196]. Such models are often based on a light-front Fock
state expansion. Typically the form factors A(t) and B(t) can be evaluated, which are simply related to the helicity
non-flip and helicity flip matrix elements of the component T̂++ of the EMT. Being related to the stress tensor T̂ ij

the form factor D(t) naturally “mixes” good and bad light-front components and is described in terms of transitions
between di↵erent Fock state components in overlap representation. As a quantity intrinsically non-diagonal in a Fock
space, it is di�cult to study the D-term in approaches based on light-front wave-functions. This is due to the relation
of the D-term to internal dynamics: a complete description of a hadron requires the inclusion of all Fock components.

D. Size of the forces in the nucleon, and comparison with linear potential confinement forces

Very frequently, e.g. in colour tube models, the confinement forces are related to the linear potential Vconf(r) = �r,
where � ⇠ 1GeV/fm is estimated from the slope of meson Regge trajectories. Recently the spatial distribution of the
stress tensor for a heavy quark Q̄Q pair was directly measured on the lattice: the typical size of the forces ⇠ 1GeV/fm
was confirmed [205]. Such a linear interquark potential corresponds to a constant force between quarks F = �. Our
aim is to compare this force with the forces encoded in the stress tensor.
The spherical shell of radius r in the nucleon experiences the normal force Fn = 4⇡r2[ 23s(r) + p(r)] and tangential

force Ft = 4⇡r2[� 1
3s(r) + p(r)]. We use the chiral quark-soliton model (�QSM) results of Ref. [126] to compute the

corresponding forces. The result is shown on Fig. 7, we see that the maximally achieved strength is five times smaller
than the confining forces in a colour tube model.

E. Spin-1 hadrons

Light vector mesons were studied in Ref. [206] using light-front wave-functions obtained from an AdS/QCD model.
For the ⇢-meson the mean square radius of the energy density was found to be hr2iE = 0.21 fm2. This is significantly
smaller then the mean square charge radius of ⇢+ determined to be hr2ich = 0.53 fm2 in the same approach [207].

The GPDs for the deuteron were introduced in [192] and studied in details in Ref. [193]. The EMT form factors of
the deuteron were studied in Ref. [208] using a deuteron wave function from a softwall AdS/QCD model. The D-term
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Figure 7. The normal force Fn = 4⇡r2[ 23s(r) + p(r)] (solid) and tangential force Ft = 4⇡r2[� 1
3s(r) + p(r)] (doted) experienced

by a spherical shell of radius r in the nucleon computed in the �QSM.
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✓
2

3
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◆
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3
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◆
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the small-t behavior of D(t) [202–204]. The slope of D(t) at zero-momentum transfer diverges in the chiral limit as
D

0(0) ⇠ 1/m⇡. This behavior is reproduced also in chiral models [126, 180].
In Section XII the mechanical radius of a hadron was defined not in terms of the slope of D(t). Applying the

definition of the mechanical radius (41) to the nucleon case, one can see on general grounds that the corresponding
mechanical radius (in contrast to D

0(0) and to the charge radius of the nucleon) is finite in the chiral limit (m⇡ ! 0).
Therefore, one expects that the nucleon mechanical radius should be smaller than, say, the charge radius. Indeed, the
chiral quark soliton model predicts the mechanical radius of the proton to be about 25% smaller than its mean square
charge radius: hr2imech ⇡ 0.75 hr2icharge.
It is instructive to see details of the strong forces distribution inside the nucleon. The radial (normal) forces in

Eq. (43), are always “stretching” (directed outwards the nucleon centre) and monotonically decrease with distance from
the centre. The distribution of the tangential forces provides us with further fine details of how the strong forces keep
the nucleon together. From the stability condition (46) it is clear that the tangential force must at least once change
its direction. Studying these forces one can pose very intriguing questions about nature of strong forces – how many
times do the forces change from “stretching” to “squeezing”? What does this number mean? What does distinguish
the regions of “stretching” and “squeezing”? What do we learn about the confinement mechanism from this?
Presently we are not able to answer the above posed questions. Here we just report the results on the force

distribution in the nucleon from models. In Fig. (6) we plot the vector field of the �-component of the tangential force
(the 2D vector vector field 4⇡r2Tije

�
j ) inside the nucleon9 obtained from EMT densities from the chiral quark soliton

model [126].
One clearly sees that at a distance of r ⇡ 0.5 fm from the nucleon centre the tangential force changes its direction,

and turns from “stretching” to “squeezing”. Thus, we see that there are two qualitatively di↵erent regions inside the

Figure 6. Visualisation of the �-component of the tangential force (the 2D vector vector field 4⇡r2Tije
�
j ) distribution in the

nucleon from the chiral quark soliton model. The radius of the disc on the figure is 1.5 fm, the colour legend gives the absolute
value of the tangential force in GeV/fm.

9
See also recent lattice calculations of the spatial distribution of forces for the heavy quark Q̄Q pair in Ref. [205]. The formalism provided

here paves a way to perform analogous studies on the lattice for hadrons.

Compare with the linear potential force of ~1 GeV/fm !

What does it imply for pictures of the confinement?

�2 � D(0) � �4

Values of D-term for the nucleon:

Chiral Quark Soliton model Goeke et al.  ‘2007Boffi, Radici,  Schweitzer ‘2001

DQ(0) ⇡ �1.56 at µ = 4 GeV2 Dispersion relations Pasquini, Vanderhaeghen, MVP ‘2014

stretching squeezing

Goeke et al.  ‘2007

Large Nc nucleon =

chiral soliton
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(b)

γ
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π0
(P)

π0
(P’)

(c)

γ
∗

γ

GDA

Figure 1. (a) A natural but impractical probe of EMT form factors is scattering o↵ gravitons. (b) Hard-exclusive reactions like
deeply virtual Compton scattering (DVCS) provide a realistic way to access EMT form factors through GPDs. Here one of the
relevant tree-level diagrams is shown. (c) Information on the EMT structure of particles not available as targets, such as e.g. ⇡0,
can also be accessed from studies of generalized distribution amplitudes (GDAs) which are an “analytic continuation” of GPDs
to the crossed channel. The shown reaction �⇤� ! ⇡0⇡0 (and analog for other hadrons) can be studied in e+e� collisions.

VI. THE LAST GLOBAL UNKNOWN PROPERTY OF A HADRON

The D-term is sometimes referred to as the “last unknown global property.” To explain what this means we recall
that the structure of hadrons, the bound states of strong interactions, is most conveniently probed by exploring
the other fundamental forces: electromagnetic, weak, and (in principle) gravitational interactions. The particles
couple to these interactions via the fundamental currents J

µ
em, J

µ
weak, Tµ⌫

grav which are conserved (in case of weak
interactions we deal with partial conservation of the axial current, PCAC). The matrix elements of these currents are
described in terms of form factors which contain a wealth of information on the probed particle. The undoubtedly most
fundamental information corresponds to the form factors at zero momentum transfer. For the nucleon, these are the
“global properties:” electric charge Q, magnetic moment µ, axial coupling constant gA, induced pseudo-scalar coupling
constant gp, mass M , spin J , and the D-term D. These properties, being related to external conserved currents, are
scale- and scheme-independent in QCD. All global properties are in principle on equal footing and well-known, see
Table I, with one exception: the D-term.

em: @µJ
µ
em = 0 hN 0|Jµ

em|Ni �! Q = 1.602176487(40)⇥ 10�19C
µ = 2.792847356(23)µN

weak: PCAC hN 0|Jµ
weak|Ni �! gA = 1.2694(28)

gp = 8.06(55)

gravity: @µT
µ⌫
grav = 0 hN 0|Tµ⌫

grav |Ni �! m = 938.272013(23)MeV/c2

J = 1
2

D = ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with
respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial
current, and gA or gp are strictly speaking defined in terms of transition matrix elements in the neutron �-decay or muon-capture.
The values of the properties are from the particle data book [107] and [108] (for gp) except for the unknown D-term.

In some cases (e.g. free particles, Goldstone bosons) the value of the D-term is fixed by general principles (see
discussions below). For other particles the D-term is not fixed and it reflects the internal dynamics of the system
through the distribution of forces. In strongly interacting systems the D-term is sensitive to correlations in the system.
For example, the baryon D-term behaves as ⇠ N

2
c whereas all other global observables (mass, magnetic moments, axial

charge, etc.) behave at most as ⇠ Nc in the large Nc limit. For a large nucleus the D-term shows also anomalously
fast increase with the atomic mass number D ⇠ A

7/3.

Unfortunately the Mellin moments are not observable in model independent way.  However, D(t)

is related to subtraction constant in dispersion relations for amplitudes (observables!)

H(⇠, t) =

Z 1

�1
dx

✓
1

⇠ � x� i0
�

1

⇠ + x� i0

◆
H(x, ⇠, t)

ReH(⇠, t) = �(t) +
1

⇡
vp

Z 1

0
d⇠0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
�

1

⇠ + ⇠0

◆

�(t) =
4

5

X

q

e2q Dq(t) +
X

q

e2q dq3(t) + ...

D(t) is more easy access than J(t). It is possible model independent extraction of D(t) in contrast to J(t)

MVP ‘2003 (small-x DR)

Teryaev ‘2005

Anikin, Teryaev ‘2007

Diehl, Ivanov ‘2007

Z 1

�1
dx xH

a(x, ⇠, t) = A
a(t) + ⇠

2
D

a(t) ,

Z 1

�1
dx xE

a(x, ⇠, t) = 2Ja(t)�A
a(t)� ⇠

2
D

a(t) .
X. D. Ji ’96

DVCS amplitude at LO (directly measurable!)



Pion D-term

• D-term of π0

access EMT form factors of unstable particles
through generalized distribution amplitudes
(analytic continuation of GPDs)
via γγ∗ → π0π0 in e+e−

Masuda et al (Belle), PRD 93, 032003 (2016)

 

π0(P)

π0(P’)

  

γ∗

γ

GDA

best fit to Belle data → DQ
π0
≈ −0.7

at 〈Q2〉 = 16.6 GeV2

compatible with soft pion theorem Dπ0 ≈ −1
(if gluons contribute the rest)
Kumano, Song, Teryaev, PRD97, 014020 (2018)
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µ
2 = 4GeV2 [184, 185]. The lattice data were obtained in a hybrid approach using domain wall valence quarks with

2 + 1 flavors of improved staggered sea quarks not including disconnected diagrams. The “dataset 6” from [184] shown
in Fig. 10 was taken on a 283⇥32 lattice with a lattice spacing a = 0.124 fm and a pion mass of m⇡ = (352.3±1.4)MeV.
The results from bag [174] and Skyrme [180] model show the total scale–independent D(t). The chiral quark soliton model
is based on the instanton picture of the instanton vacuum (see e.g. a review by D.I. Diakonov [224]) therefore the results of
[126] on D

Q(t) refer to the normalisation point of order inverse instanton size in the vacuum, numerically µ
2 ' 0.4 GeV2,

see discussion in [225].
Keeping all this in mind, Fig. 10 shows a remarkable agreement. The MIT bag model [174] seems to underestimate

the magnitude of the D-term form factor, the Skyrme model [180] seems to overestimate it (though, with di↵erent
parameter fixing than in [180], a better discription may be possible). The results from dispersion relations [185] and
chiral quark soliton model [126] compare very well to the experimental results from [222].

B. Pion

Recently in Ref. [131] the first extraction of the pion EMT form factors from the BELLE data on �
⇤
� ! 2⇡0 [226]

was reported. The results for the quark part of EMT form factors (AQ(t) and D
Q(t) in our notation, see Eq. (7)) were

presented. The results for the form factors at zero momentum transfer are:

A
Q(0) ⇡ 0.70, D

Q(0) ⇡ �0.75. (77)

These results are in agreement with the normalisation condition for the full form factor A(0) = 1 and with the soft
pion theorem D = �1, given that quarks carry only a fraction (about 70% according to the result of Ref. [131]) of the
pion mass, and the gluon contribution to the D-term is not extracted. Also it is important that the analysis of [131]
shows that the D-term is definitely negative as it should be for mechanical stability of the pion. The result obtained in
[131] for the slopes of the pion EMT form factors are:

1

AQ(0)

d

dt
A

Q(0) = 1.33 ⇠ 2.02 GeV�2
,

1

DQ(0)

d

dt
D

Q(0) = 8.92 ⇠ 10.35 GeV�2
. (78)

These results confirm the inequality �D
0(0) > A

0(0) expected from chiral theory, however the numerical values are
in sharp contrast with our estimate (68) based on the instanton picture of QCD vacuum combined with the chiral
perturbation theory. It would be very important to understand which dynamical mechanism leads to anomalously
large slopes of the pion EMT form factors obtained in analysis of Ref. [131].

XX. CONCLUSIONS

We have reviewed aspects of the physics associated with the D-term and other EMT properties. The physics of
EMT form factors is important for a variety of problems including the description of hadrons in strong gravitational
fields, hard exclusive processes, hadronic decays of heavy quarkonia, and the description of certain exotic hadrons with
hidden charm as hadroquarkonia.

The matrix elements of the EMT contain fundamental information on a particle, namely the mass, spin, and D-term.
While mass and spin are related to the Casimir operators of the Poincaré group, the D-term is related to the stress
tensor and internal forces inside a composed particle. When interpreted in the Breit frame the Fourier transforms of
the EMT form factors give insights on the 3D spatial densities describing the distributions of energy, pressure and
shear forces.

In free field theory the D-term of a spin-zero boson is negative, but that of a spin 1
2 fermion is zero. This indicates

an interesting distinction of bosons and fermions.
In interacting theories the D-term in general is not fixed, except for the Goldstone bosons of chiral symmetry

breaking for which the D-term is determined by soft-pion theorems to be D = �1 in the chiral limit. For other hadrons
the D-term is not fixed, and reflects the internal dynamics of the system through the distribution of forces, and is
sensitive to correlations in the system. For example, the baryon D-term behaves as ⇠ N

2
c whereas all other global

observables (mass, magnetic moments, axial charge, etc.) behave at most as ⇠ Nc in the large Nc limit. For a large
nucleus the D-term shows also anomalously fast increase with the atomic mass number D ⇠ A

7/3.
The form factor D(t) provides the key to introduce mechanical properties. For instance, we have given a definition

of the mechanical radius of a hadron, discussed the concepts of normal and tangential forces, and presented (on the
basis of model results) a picture of the forces inside the nucleon. Remarkably, the forces change their directions in the

Slopes obtained:

18

For the numerical estimate of the D(t) slope we can combine the results in Eqs. (65,67):

�D
0(0) =

Nc

48⇡2f2
⇡

+
ln

�
µ
2
/m

2
⇡

�

24⇡2f2
⇡

= (0.73 + 1.66) GeV�2 = 2.40 GeV�2
. (68)

Here for the numerical estimate we use µ = m⇢ and physical pion mass of m⇡ = 0.140 GeV. An important conclusion
from the consideration of slopes of the EMT form factors in chiral theory is that for the pion �D

0(0) should be larger
than A

0(0) due to the di↵erent behavior of these slopes in the chiral limit.
It is also instructive to compare Eq. (68) with the analogous estimate (see section 6.1 of Ref. [162]) for the slope of

pion charge form factor Fe.m.(t):

F
0
e.m.(0) =

Nc

24⇡2f2
⇡

+
ln

�
µ
2
/m

2
⇡

�

96⇡2f2
⇡

= (1.46 + 0.42) GeV�2 = 1.88 GeV�2
. (69)

First, the obtained numerical value is in good agreement with the experimental value of F 0
e.m.(0) = (1.86± 0.03) GeV�2

[166], which indicates that such an estimate gives sensible results for pion form factors. Second, it is very instructive
to compare the expressions (68) and (69) – one sees that the chiral loop corrections to the slope of the pion D(t) form
factor are four times larger than the to slope of the pion charge form factor, whereas the large Nc (“core”) contribution
is two times smaller – the slope of the pion D(t) form factor is dominated by chiral logs. This demonstrates that the
D-term is very sensitive to physics of spontaneous breakdown of the chiral symmetry in QCD and study of the D-term
can provide us with new e↵ective tools for probing the mechanisms of chiral symmetry breaking in QCD.

The low energy e↵ective chiral Lagrangian in curved space-time and the gravitational form factors of the pion were
also studied in quark model frameworks [167–169], AdS/QCD models in [170], and covariant and light-front constituent
models [171]. The result (65) was rederived in Ref. [167] in the large Nc limit in quark spectral models, where it was
noted that the equality of the slopes of A(t) and D(t) was independent of the particular realization of the spectral
model. The von Laue condition for the pion was studied in [172]. A study of pion EMT form factors in lattice QCD
was reported in Ref. [173].

C. Nucleon

The first model studies of the nucleon D-term were performed in the bag model [174], chiral quark soliton model
[175], see also [126, 176–179], and Skyrme model [180, 181]. The quark contributions to the D-term were also studied
in the QCD multi-color limit Nc ! 1 [24], lattice QCD [182–184], dispersion relations [185], and quark models
[186–191, 194–196].
The bag and chiral quark soliton model were used in Ref. [134] to illustrate how interactions can generate the

D-term of a fermion. In the bag model a non-zero D-term emerges when interactions are introduced in the shape of
the bag boundary condition which is imposed to simulate confinement and bind the otherwise free quarks. In the
chiral quark soliton model the D-term vanishes when the chiral interactions are “switched o↵” and the free theory is
restored in a limiting procedure. The bag model with massless quarks gives a small value D = �1.1 [134, 174]. The
chiral models predict a more sizable D-term in the range [126, 176–181]

� 4 . D . �2 . (70)

In the large Nc limit the D-term of the nucleon exhibits the flavor hierarchy [24]

|Du(t) +D
d(t)| ⇠ N

2
c � |Du(t)�D

d(t)| ⇠ Nc . (71)

This result is supported by numerical calculations in chiral quark soliton model [179] and lattice QCD [182–184] .
Fig. 4 shows the EMT densities from the chiral quark soliton model (�QSM) [126]. In the center T00(0) = 1.7GeV/fm3

which is approximately 13 times the nuclear matter density while p(0) = 0.23GeV/fm3, which corresponds to 3.7 · 1029
atmospheric pressures. The positive pressure in the center means repulsion, and negative p(r) for r & 0.6 fm means
attraction. Repulsive and attractive forces balance each other exactly according to the von Laue condition (31).
The von Laue condition can be rigorously proven in the �QSM [126] by exploring a theorem known as “virial

theorem:” the soliton mass is a functional of the soliton profile. One may consider a special class of variations of the
profile function generated by the dilatational transformations r ! � r. This yields an energy functional m(�) which
has a minimum at � = 1. The von Laue condition can now be expressed as

R
d3r Tii(r) = m

0(�)|�=1 = 0 [126]. This
shows that this condition is satisfied by any stationary solution: global minimum, local minimum, other extremum,
saddle point of the action. This means the von Laue condition is necessary but not su�cient for stability.

Considerably larger than estimates

in chiral effective theory! Why?
Schweitzer, MVP ‘2018
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Simplifying assumptions (for present state of art of the experiment):

1) d3(t),  d5(t), … much smaller than D(t). It is so at large normalisation scale.

2) Flavour singlet D(t) is dominant. Justified in large Nc limit. Can be relaxed for more precise data.
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XIX. FIRST EXPERIMENTAL RESULTS

Recently first information on the D-terms of the proton and the neutral pion became available from phenomenological
analyses of experimental data. In this section we review what is currently known.

A. Nucleon

The D-term was shown to be of importance for the phenomenological description of hard-exclusive reactions [17–20],
see also the reviews [28, 29] and references there in. The D-term can be accessed in DVCS with help of fixed-t

dispersion relations [32–35], for the LO DVCS Compton form factor H(⇠, t) =
R 1
�1 dx(

1
⇠�x�i0 � 1

⇠+x�i0 ) H(x, ⇠, t) one
obtains

ReH(⇠, t) = �(t) +
1

⇡
p.v.

Z 1

0
d⇠

0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆
. (72)

The corresponding subtraction constant �(t) in the leading QCD order is related to the D-term in the following way:

�(t) = 2

Z 1

�1
dz

D(z, t)

1� z
, (73)

with D(z, t) having the following expansion in the Gegenbauer polynomials C3/2
n (z):

D(z, t) = (1� z
2)

1X

k=1

⇥
e
2
u d

u
2k�1(t) + e

2
d d

d
2k�1(t)

⇤
C

3/2
2k�1(z), (74)

where eq is the electric charge of the quark with flavour q. In the above equation we neglected contributions of strange
and heavy quarks. The EMT form factor D

q(t) = 4
5 d

q
1(t). We remind that the quantities considered here (dq1(t),

D(z, t), etc.) depend on the QCD normalisation point µ2. We do not write explicitly this dependence for brevity. The
QCD evolution equations for the quark and gluon D-term are the same as for the second Mellin moments of the quark
and gluon parton distributions.
The first experimental access to the subtraction constant �(t, µ2) based on the most complete database of DVCS

results was obtained in [20] (KM15 fit) in the form:

�(t, µ2) = � C

(1� t/M
2
C)

2 , (75)

with parameters C = 2.768 and MC = 1.204 GeV at the QCD normalisation point of µ2 = 4 GeV2. The statistical
uncertainty of the parameters are of order 20� 30% [220], but the authors of Ref. [20] refrained from publishing the
precise value of the statistical error bars due to large systematic uncertainties (see the discussion of this point in
relation to the D-term in Ref. [221]) 11.

We can relate the LO subtraction constant �(t, µ) to the EMT form factor DQ(t, µ2) = D
d(t, µ2) +D

d(t, µ2) using
the following simplifying assumptions:

• only the first coe�cient dq1(t) of the Gegenbauer expansion (74) is taken account. In the asymptotic limit of
infinitely large renormalization scale µ all dqi (t) for i > 1 vanish, except for dq1(t) which determines the asymptotic
form of GPDs [24] and is related to the EMT form factor Dq(t) = 4

5 d
q
1(t);

• dominance of the flavour singlet combination of the quark D-term d
u
1 ⇡ d

d
1 ⇡ d

Q
/2. This can be justified by in

the limit of large number of colours, see Eq. (71).

Under these assumptions we obtain:

D
Q(t) =

4

5

1

2(e2u + e
2
d)
�(t) =

18

25
�(t). (76)

11
We are grateful to Kresimir Kumerički for discussion of this point.

Experiment and phenomenology

• HERMES proceeding NPA711, 171 (2002); Airapetian et al PRD 75, 011103 (2007)

φ (rad)

A
C

HERMES preliminary
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-3 -2 -1 0 1 2 3

beam charge asymmetry
dotted line: VGG model without D-term (ruled out)
dashed line: VGG model + positive D-term (ruled out)
dashed-dotted: VGG model + negative D-term (yeah!)
Frank Ellinghaus, NPA711, 171 (2002)

model-dependent statement (!)
Belitsky, Müller, Kirchner, NPB629 (2002) 323

• fits by Kresimir Kumerički, Dieter Müller et al: D < 0 needed! model-independent evidence!

DVCS parametrizations from:
Kumerički, Müller, NPB 841 (2010) 1,

Kumerički, Müller, Murray, Phys. Part. Nucl. 45 (2004) 723

Kumerički, Müller, EPJ Web Conf. 112 (2016) 01012.

Fig. 9 from ECT∗ workshop proceeding 1712.04198

statistical uncertainty of D in KMM12: ∼ 50%,

statistical uncertainty of D in KM15: ∼ 20%.

unestimated systematic uncertainty

Kresimir Kumerički private communication

The first determination of D(t) from DVCS 

Kumericki, Mueller Nucl. Phys. B841 (2010) 1

KM10, statistical accuracy 60%

KM12, statistical accuracy 50%

KM15, statistical accuracy 20%

The D-term is negative, statistical accuracy is increasing

 with new data added.
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The KM15 fit Eq. (75) corresponds to the negative D-term of DQ = �2.0 at µ2 = 4 GeV2 with about 20% statistical
uncertainty and unestimated systematic one. The result of the KM15 fit [20] corresponding to Eqs. (75,76) is shown in
Fig. 10 in comparison with theoretical predictions and other fits to DVCS data.

Recently an analysis of the JLab data [90, 101]12 was reported [222] where an experimental information on the quark
contribution to the D-term was also extracted. Additionally, the pressure distribution in the proton was presented in
Ref. [222]. Below we compare the theoretical predictions with the data on the form factor, and not with the pressure
distribution of [222] as the latter was obtained under model assumptions which are still missing clear justification.

In Ref. [222] the dispersion relations subtraction constant �(t) (see Eq. (72) for the definition) at the normalisation
point of µ2 = 1.5 GeV2 was presented on their Fig. 4 [223]. The main di↵erence of the analysis in [222] with that in
[20] is the much smaller systematic uncertainties in the former. This di↵erence calls for a clarification.
The D

Q(t) form factor obtained from the analysis of [222] with help of Eq. (76) is also shown in Fig. 10 where for
comparison we include the results for the D-term form factor from dispersion relations [185], lattice QCD [184] and
models [126, 174, 180].
The dispersion relation study of Ref. [185] used information on pion parton distribution functions which fixes the

overall normalization of the form factor: in Fig. 10 the result for DQ(t) is shown which is normalized as DQ = �1.56.
The results from the dispersion relations and lattice QCD show the quark contribution to D

Q(t) and refer to the scale
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dispersion relations

KM15 global fit

lattice LHPC

chiral quark soliton

Skyrme model
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JLab data

Figure 10. The DQ(t) form factor obtained from the KM15 fit [20] in comparison to DQ(t) obtained form Je↵erson Lab analysis
[222], to calculations from dispersion relations [185], lattice QCD [184], and results from the bag [174], chiral quark soliton [126]
and Skyrme [180] model. The JLab data [222] refers to the normalisation point of µ2 = 1.5 GeV2, KM15 fit, dispersion relations
and lattice results show the contribution of quarks to the D-term at the QCD scale of 4GeV2. The bag and Skyrme models show
the total D-term which is renormalization scale independent. The result from chiral quark soliton refers to the low normalisation point
of µ2 ' 0.4 GeV2

12
These data are included in the experimental database of Ref. [20]

Recent analysis of CLAS data
• CLAS result

based on: Girod et al PRL 100 (2008) 162002, Jo et al PRL 115 (2015) 212003

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018) ← Latifa (Monday)

see talk: V. Burkert, SPIN 2016 in Urbana-Champaign, Sep. 2016
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D-term = subtraction term in
fixed-t dispersion relations for ADVCS

Teryaev hep-ph/0510031

Anikin, Teryaev, PRD76, 056007 (2007)

Diehl and Ivanov, EPJC52, 919 (2007)

Radyushkin, PRD83, 076006 (2011)

subtraction term ∼ d1 + d3 + d5 + . . .
the di → 0 for i > 1 with Q2 →∞

assumed d3, d5, . . . small compared to d1
working assumption (do better → future data)

chiral quark-soliton dq3/d
q
1 = 0.3, dq5/d

q
1 = 0.1

Kivel, Polyakov, Vanderhaeghen, PRD63 (2001)

Dq(t) = 4
5
dq1(t)

⇒ CLAS, KM-fits, dispersion relations, models, lattice: D-term negative & sizeable!

(double-checking if same normalization in analysis and calculations) Exciting! What do we learn?

1) D-term negative and sizeable

2) Agrees with chiral quark soliton model

      DR calculations

LETTER
https://doi.org/10.1038/s41586-018-0060-z

The pressure distribution inside the proton
V. D. Burkert1*, L. Elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
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1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org
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Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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The systematic uncertainty needs more detailed

estimate!

Details in [K. Kumericki, Nature 570 (2019)]

and in [Dutrieux, Lorce et al. (2021)]




Nucleon “cosmological term”.

Interaction of the gluon and quark subsystems inside the nucleon  
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This equation can be interpreted (see e.g §2 of [28]) as equilibrium equation for quark
internal stress and external force (per unit of the volume) fi(r) from the side of the gluons.
This gluon force can be computed in terms of EMT form factor c̄

Q(t) as:

fi(r) = MN
@

@ri

Z
d
3�

(2⇡)3
e
�i�r

c̄
Q(��2) (5.6)

Due to spherical symmetry this force (per unit of volume) is directed along unit vector
ni = ri/r. For the case of monotonically decreasing with distance Fourier transform of
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Q(0) > 0) the corresponding force (5.6) is directed towards the
nucleon centre, therefore we call it squeezing (compression) force. For opposite sign the
corresponding force is stretching. The results of previous sections imply that the gluon
forces squeeze (compress) the quark subsystem.

Integrating Eq. (5.6) over some volume we obtain the force acting on this volume from
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The total squeezing gluon force acting on quarks in the nucleon is equal to Ftotal = F (1):
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The estimates of the nucleon c̄
Q(t) in previous sections can be parametrised by a simple

dipole Ansatz (4.5). With this Ansatz we obtain that the total squeezing (compression)
gluon force acting on the quark subsystem in the nucleon is:

Ftotal = c̄quark MN⇤ ' 5.9 · 10�2GeV

fm
. (5.9)

This force can be compared with typical size of forces inside the quark subsystem. The
latter in the nucleon are of order ⇠ 0.2 GeV/fm [3], i.e. intersystems force is about 3 times
smaller. Also this force is about 15 times smaller than the confinement force ⇠ 1 GeV/fm
commonly associated with the string tension. So, we have an interesting physics picture –
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Cbar(t) FF important to know what are (compressing or stretching) forces experienced by quarks

from side of gluons inside the nucleon. Size of this forces?



The nucleon’s “cosmological term” from instantons.

Instantons form a dilute liquid in the QCD vacuum. They provide a mechanism of spontaneous 

breakdown of chiral symmetry in QCD. Shuryak ‘1982


Diakonov, Petrov ‘1983

��MN c̄Q(t) ū0u = hp0|ig ̄G�↵�↵ |pi
Computed in QCD vacuum using the method of Diakonov, Weiss, 


MVP ‘1996

Balla, Weiss, 

MVP ‘1997
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We  found a strong suppression by the instanton packing fraction
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We obtained small and positive value at a low normalisation point of ~0.5 GeV^2. 

This corresponds to rather small compression forces experienced by quarks!
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it looks like the two systems almost decouple. 

Justification of Teryaev’s equipartition conjecture ?
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Abstract: Using the instanton picture of the QCD vacuum we compute the nucleon
c̄
Q(t) form factor of the quark part of the energy momentum tensor (EMT). This form

factor describes the non-conservation of the quark part of EMT and contributes to the
quark pressure distribution inside the nucleon. Also it can be interpreted in terms of
forces between quark and gluon subsystems inside the nucleon. We show that this form
factor is parametrically small in the instanton packing fraction. Numerically we obtain for
the nucleon EMT a small value of c̄

Q(0) ' 1.4 · 10�2 at the low normalisation point of
⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark
and gluon mechanical subsystems are smaller than the forces inside each subsystem. The
forces from side of gluon subsystem squeeze the quark subsystem – they are compression
forces. Additionally, the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture.
We estimate that the contribution of c̄Q(t) to the pressure distribution inside the nucleon
is in the range of 1� 20% relative to the contribution of the quark D-term.
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and shear forces also ensures that all relations for the force distributions discussed in the section
IX and Appendix of [4] are satisfied automatically.

For a particle of arbitrary spin we can introduce more general tensor quantities:

Mk1...kn
n =

Z
d3r rn Y k1...kn

n Q00(r), (15)

which correspond to 2n-multipoles of the energy distribution, obviously M0 = M. Note, that only
even n are allowed by the P-parity conservation. Eq. (15) can be reformulated as the multipole
expansion of the energy density :

Q00(r) = Â
n=0,2,...

en(r)Q̂k1...kn
n Y k1...kn

n , (16)

where Q̂k1...kn
n is the 2n-pole spin operator and en(r) is the corresponding 2n-pole energy density.

Analogously, for an arbitrary spin particle we can introduce a set of dimensionless tensors of
rank n+2:

Dikk1k2...kn
n =� 4

M

Z
d3r (Mr)nY k1k2...kn

n Qik(r). (17)

Again, only even n are allowed by the P-parity and Dik
0 = 0 due to the stability condition (9). For

particles with spin J = 0, 1
2 only Dikk1k2

2 is non-zero and can be expressed through the D-term (3):

Dikk1k2
2 =

✓
d ik1d kk2 +d kk1d ik2 � 2

3
d ikd k1k2

◆
D. (18)

The tensor observables (17) can be related to GPDs, see e.g. the discussion for spin-1 hadrons in
recent paper [15].

Gravitational form factors of Goldstone bosons

Goldstone bosons of a spontaneously broken symmetry in any theory play crucial role in dy-
namics of the theory. For example, the phenomenon of spontaneous breakdown of the chiral sym-
metry in the strong interaction is crucial for the description of the mass spectrum and dynamics in
QCD.

The Goldstone bosons of spontaneously broken chiral symmetry are (almost) massless spin-0
particles and therefore the D-term cannot be defined in terms of static stress tensor, see (3). For
Goldstone bosons we define the D-term in Lorentz covariant way, in terms of EMT form factors:

hp0|Qµn
a (0)|pi= 2PµPnAa(t)+

1
2
�
DµDn �hµnD2�Da(t)+2 f 2

p hµn c̄a(t) (19)

Here P = (p0+ p)/2, D = p0 � p and fp is the pion decay constant which has dimension of mass
and sets the mass scale in the effective theory. We introduced the form factors for individual quark
and gluon EMTs. The total EMT is conserved

∂µQµn = 0, Qµn = Â
q

Qµn
q +Qµn

g , (20)
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hence Âa=q,g c̄a(t) = 0. The quark form factor c̄Q(t) = Âa=u,d,s,... c̄a(t) = �c̄g(t), describes the
non-conservation of EMT for individual quark and gluon pieces. This form factor is important
to determine the pressure forces distribution in a hadron individually for quarks and gluons, and
to study the forces between quark and gluon subsystems in hadrons¶ (see recent discussions in
[17, 18, 8, 9]).

The form factors in eq. (19) at zero momentum transfer can be fixed by the soft pion theorem:

lim
p0µ!0

hp0|Qµn
Q (x)|pi= 0. (21)

This theorem leads to the relation among form factors:

0 =
1
2

pµ pn �AQ(0)+DQ(0)
�
+2 f 2

p hµn c̄Q(0). (22)

This equation is satisfied if the EMT form factors of massless Goldstone boson are related to each
other by:

DQ(0) =�AQ(0), c̄Q(0) = 0. (23)

From the first equality we obtain immediately the value of the D-term of the pion in the chiral
limit D = �1 [19]. Our result that c̄Q(0) = 0 for Goldstone bosons is valid for arbitrary QCD
normalisation point.

Nucleon’s seismology?

Up to now we consider the energy density Q00(r) and distribution of forces encoded in the
stress tensor Qik(r) separately. It would be interesting to establish connection between these quan-
tities, this would be a step towards an understanding of the equation of state inside a hadron. If
we treat the interior of a hadron as an elastic medium and boldly identify elastic moduli K and µ
(see §4 of [16]) with the pressure and shear forces distributions as K = p(r) and 2µ = s(r), we can

¶The stability equation for the quark part of the stress tensor has the form:

∂Qik
Q(r)

∂ rk + f i(r) = 0.

This equation can be interpreted (see e.g §2 of [16]) as the equilibrium equation for quark internal stress and external
force (per unit of the volume) f i(r) acting on quark subsystem from the side of the gluons. This gluon force can be
computed in terms of EMT form factor c̄Q(t) as [18]:

f i(r) = M
∂

∂ ri

Z d3D
(2p)3 e�iD·r c̄Q(�D2).

The total squeezing (stretching) gluon force acting on quarks in the nucleon is equal to [18]:

Ftotal =
2M
p

Z 0

�•

dtp
�t

c̄Q(t).

Estimates in the instanton model of the QCD vacuum in Ref. [18] show that this force is squeezing and have rather small
size of Ftotal ' 6 ·10�2 GeV/fm.
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Soft Goldstone (pion in the chiral limit) theorem:

EMT ffs for Goldstone boson (pion in the chiral limit):



 gravitational D-form factor is related to “elastic properties” of the nucleon, and gives access to 
details of strong forces inside the nucleon.


We showed  that 3D Breit frame and 2D light front force distribution are equivalent 

 as they are related to each other by invertible Abel transformation.  Any result in Breit frame     
(stability conditions, experimental data, model calculations, etc.) can be unambiguously transformed 
into corresponding result for light-front force distributions (and vice versa)


 Different ways of the interpreting the form factors can be regarded as different choices of 
schemes.  To my taste 3D Breit force distributions are more intuitive and physics appealing.


 D(0) (the D-term) is the last unexplored global (in the same sense as mass and spin) property of 
the nucleon 


 First experimental results for D(t) of the nucleon and of the pion are obtained. It is negative, as 
expected from stability conditions.


 Cbar(t) (“nucleon cosmological term” ) FF is important to understand forces between quark and 
gluon subsystems inside hadrons. Instanton picture of QCD vacuum predicts small positive value of 
the FF.  That corresponds to compression forces experienced by quark subsystem (at variance with 
lattice results) 


Conclusions



Outlook

 knowledge of the D-term can be important to understand hadron interaction in gravitational field 
relevant to BH or NS mergers (LIGO events). 


 the pressure distribution inside hadrons important to understand the physics of quarkonia 
interaction with the nucleon and the physics of hadro-charmonia (LHCb pentaquarks, tetraquarks 
with hidden charm) 


 several theoretical issues - relation between pressure and energy density (elastic waves in 
hadrons?), analogies with cosmology, hadrons as projection of higher dimensional objects, relations to 
exactly solvable 2D models, etc.   
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relativistic corrections) and they are identical in both approaches. The corresponding densities are two-dimensional
(2D) and are distorted relative 3D quasi-probabilistic distributions due to the motion of the nucleon relative to observer.

Our aim here is to relate the 2D light front densities of internal forces inside the hadron to the 3D Breit frame
distributions. We derive one-to-one relations between light front and Breit frame distributions: any result (model
calculation, experimental measurement, etc.) for 3D Breit frame forces can be unambiguously translated to the form
of the 2D light front force distributions (and vice versa). Additionally the derivation of the 2D stability conditions
from those of 3D are given. The relations are illustrated on examples of 1) heavy nucleus as a liquid drop, and 2)
nucleon at large Nc.
Working with the 3D Breit frame distributions we can use our “rest frame” physics intuition, and if one is not

comfortable with their quasi-probabilistic interpretation at r ⇠ �, one can always use the relations derived here to
transform unambiguously these distributions to the light front ones and vice versa.

RELATIONS BETWEEN 3D BREIT FRAME AND 2D LIGHT-FRONT FORCE DISTRIBUTIONS

For the nucleon there are three independent EMT form factors [14, 15]:2

hp0|⇥̂µ⌫
QCD(0)|pi = ū(p0)
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PµP ⌫

m
+ J(t)

iP {µ�⌫}↵�↵

m
+

D(t)

4m

�
�µ�⌫ � ⌘µ⌫�2

��
u(p) , (2)

where ⇥̂µ⌫
QCD(x) is the symmetric EMT operator of QCD, P = (p+ p0)/2, � = p0 � p, t = �2, and symmetrisation

operation is defined as X{µY⌫} = 1
2 (XµY⌫ +X⌫Yµ). The values of the nucleon EMT form factors at zero momentum

transfer provide us with three basic mechanical characteristics of the nucleon – the mass m, the spin J = 1/2, and
the D(ruck)-term D(0). While the mass and spin of the nucleon are well-studied and well-measured quantities, the
third mechanical characteristics – the Druck term or D-term– is more subtle, as it is related to the distribution of the
internal forces inside the nucleon [2]. Important distinguishing feature of the nucleon D-term is that to access it one
needs variations of the space-time metric such that the resulting Riemann tensor is non-zero. This feature of the Druck
term is especially clearly seen in terms of e↵ective field theory for pions and nucleon in curved space discussed recently
in details in Ref. [17]. To access the mass and the spin it is enough to perform the variation of the metric with zero
Riemann tensor, e.g. to go to a non-inertial coordinate system. Despite of di�culty to access the Druck form factor,
the first experimental data are available for the nucleon [18–20] and for the pion [21]. However the systematic and
statistical uncertainties are still large. This will be considerably improved with new experiments on hard exclusive
processes.
The Breit frame distributions of the elastic pressure p(r) and shear force s(r) in 3D can be obtained in terms of

Druck form factor D(t) through [1, 2]:
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Recently in Refs. [5, 13] the 2D light front pressure and shear force distributions were obtained in terms of the same
Druck form factor D(t) (we follow closely the notations of Ref. [13].):
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◆
, (5)

where x? is the 2D vector in the transverse plane. Identical up to a (conventional) global rescaling by P+/m equations
were derived in Ref. [5], using Wigner phase-space distribution in IMF.

As the 2D and 3D force distributions are expressed in terms of the same Druck form factor D(t), they can be easily
related to each other. Below we give these relations. For convenience we introduce 2D pressure P (x?) and shear force

distribution S(x?) which di↵er from those in Eq. (5) by multiplication with the Lorentz factor
P+

2m
:

2 For definition of the gravitational form factors for hadrons of arbitrary spin see Ref. [16].
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P+

2m
p(2D)(x?). (6)

These 2D force distributions can be easily obtained in terms of 3D distributions defined in Eq. (3):
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These equations have the form of invertible Abel transformation [22]. The functions S(x?)/x2
? is the Abel image of

s(r). For the readers’ convenience we collected basic facts about the Abel transformation in the Appendix.
The Eqs. (7) can be obtained from analogous equations in Ref. [5] by change of of the integration variable. Here we

derive new inversion equations. The inverse to (7) transformation can be easily obtained:
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We obtain very interesting result: the normal force distribution in 3D ( 23s(r) + p(r)) is the Abel image of the light
front shear force distribution 4

⇡S(x?) in 2D. Both Eq. (7) and Eq. (8) can be compactly written as:
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See Appendix for the explanation of the Abel transformation operation A[...](...).
From Eq. (7) it is easy to check that the 2D von Laue stability condition for the pressure:

Z
d2x?P (x?) = 0 (11)

is satisfied automatically. This 2D stability condition was discussed for the first time in section 5.1.2 of [5]. Also it is
easy to see that S and P satisfy automatically the EMT conservation di↵erential equation:
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This equation implies a number of integral relations between S(x?) and P (x?), in particular it is easy to show that:
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The combination � 1
2S(x?)+P (x?) has the meaning of the transverse force distribution (eigenvalue of 2D stress tensor).

From above equation we can conclude that this distribution must have at least one node. Number of other integral
relations between 2D force distributions can be easily derived using the general method described in Appendix A of
Ref. [1].

The Druck-term can be expressed in terms of 2D force distributions as:
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Surely the resulting Druck-term D(0) coincides with that obtained from 3D Breit frame force distributions:
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Light front pressure and shear force distributions /Lorce’18,  Freese, Miller ’21/:

Rescaling with the Lorentz factor:

One-to-one mapping (Abel transformation) between Breit and LF force distributions /Panteleeva, MVP’21/:

Abel transformation is used in tomography of spherically symmetric systems (spin-0 and 1/2 hadrons)

For non-spherical objects (spin>1/2) the Radon transformation should be used.
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Local stability conditions

In Refs. [1, 5, 31] it was argued that for the stability of the mechanical system the 3D pressure and shear forces
should satisfy the following inequality:

2

3
s(r) + p(r) > 0 . (16)

From Eq. (9) we see immediately that this 3D stability condition implies:

1

2
S(x?) + P (x?) > 0, (17)

as the Abel image of a positive function is also positive. The above inequality is analogous to the 3D local stability
conditions (16) because 1

2S(x?) + P (x?) corresponds to the distribution of normal force in 2D. This local stability
condition was discussed in Ref. [13]. We think it is important result that the stability conditions in 3D imply the
stability of 2D mechanical system.

One can show that the 3D stability condition (16) can be obtained from the positivity of the shear force distribution
(pressure anisotropy) s(r) > 0. Indeed, from the 3D EMT conservation equation:

d

dr

✓
2

3
s(r) + p(r)

◆
= �2

r
s(r), (18)

for s(r) > 0 we conclude that 2
3 s(r) + p(r) is a monotonically decreasing function. As this function goes to zero it

must be positive. From Eq. (7) we see immediately that the condition s(r) > 0 implies that:

S(x?) > 0,
1

2
S(x?) + P (x?) > 0. (19)

So we see that the stronger 3D stability conditions s(r) > 0 implies also analogous stronger condition in 2D.
We note that to ensure the 3D stability condition (16) we need stronger stability condition in 2D S(x?) > 0, see

Eq. (10). The condition (17) is not enough to guarantee the stability in 3D.
Using the positivity of the normal forces we can introduce the transverse mechanical radius:
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Our result, which is two times smaller then the result of Ref. [13], corresponds to usual geometric ratio of 2/3 between
2D and 3D mean square radii. For derivation of the relation between 2D and 3D radii the following relation for Mellin
moments of Abel images can be used:
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dx?x
N
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p
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2D pressure at the origin and the line tension

The pressure in the centre of the nucleon can be easily obtained from Eq. (7)3:

P (0) =

1Z

0

dr s(r) = �(3D). (22)

3 In our derivation we assume that 3D s(r) is not singular at r = 0, which corresponds to nullification of 2D S(0).
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The pressure in the centre of the nucleon can be easily obtained from Eq. (7)3:
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3 In our derivation we assume that 3D s(r) is not singular at r = 0, which corresponds to nullification of 2D S(0).

Local stability conditions in 3D and 2D are equivalent to each other 

(positivity property of Abel transformation)

Von Laue stability conditions in 3D and 2D
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Ref. [1].

The Druck-term can be expressed in terms of 2D force distributions as:

D(0) = �m

Z
d2x?x

2
?S(x?) = 4m

Z
d2x?x

2
?P (x?). (14)

Surely the resulting Druck-term D(0) coincides with that obtained from 3D Breit frame force distributions:

D(0) = � 4

15
m

Z
d3r r2 s(r) = m

Z
d3r r2 p(r). (15)
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Local stability conditions

In Refs. [1, 5, 31] it was argued that for the stability of the mechanical system the 3D pressure and shear forces
should satisfy the following inequality:

2

3
s(r) + p(r) > 0 . (16)

From Eq. (9) we see immediately that this 3D stability condition implies:

1

2
S(x?) + P (x?) > 0, (17)

as the Abel image of a positive function is also positive. The above inequality is analogous to the 3D local stability
conditions (16) because 1

2S(x?) + P (x?) corresponds to the distribution of normal force in 2D. This local stability
condition was discussed in Ref. [13]. We think it is important result that the stability conditions in 3D imply the
stability of 2D mechanical system.

One can show that the 3D stability condition (16) can be obtained from the positivity of the shear force distribution
(pressure anisotropy) s(r) > 0. Indeed, from the 3D EMT conservation equation:
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r
s(r), (18)

for s(r) > 0 we conclude that 2
3 s(r) + p(r) is a monotonically decreasing function. As this function goes to zero it

must be positive. From Eq. (7) we see immediately that the condition s(r) > 0 implies that:

S(x?) > 0,
1

2
S(x?) + P (x?) > 0. (19)

So we see that the stronger 3D stability conditions s(r) > 0 implies also analogous stronger condition in 2D.
We note that to ensure the 3D stability condition (16) we need stronger stability condition in 2D S(x?) > 0, see

Eq. (10). The condition (17) is not enough to guarantee the stability in 3D.
Using the positivity of the normal forces we can introduce the transverse mechanical radius:
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Our result, which is two times smaller then the result of Ref. [13], corresponds to usual geometric ratio of 2/3 between
2D and 3D mean square radii. For derivation of the relation between 2D and 3D radii the following relation for Mellin
moments of Abel images can be used:
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2D pressure at the origin and the line tension

The pressure in the centre of the nucleon can be easily obtained from Eq. (7)3:

P (0) =

1Z

0

dr s(r) = �(3D). (22)

3 In our derivation we assume that 3D s(r) is not singular at r = 0, which corresponds to nullification of 2D S(0).

Relations between 2D and 3D mechanical radii 

(as usually 3D and 2D radii are related by the geometric factor 2/3) 

3
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These 2D force distributions can be easily obtained in terms of 3D distributions defined in Eq. (3):
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These equations have the form of invertible Abel transformation [22]. The functions S(x?)/x2
? is the Abel image of

s(r). For the readers’ convenience we collected basic facts about the Abel transformation in the Appendix.
The Eqs. (7) can be obtained from analogous equations in Ref. [5] by change of of the integration variable. Here we

derive new inversion equations. The inverse to (7) transformation can be easily obtained:
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We obtain very interesting result: the normal force distribution in 3D ( 23s(r) + p(r)) is the Abel image of the light
front shear force distribution 4

⇡S(x?) in 2D. Both Eq. (7) and Eq. (8) can be compactly written as:
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See Appendix for the explanation of the Abel transformation operation A[...](...).
From Eq. (7) it is easy to check that the 2D von Laue stability condition for the pressure:

Z
d2x?P (x?) = 0 (11)

is satisfied automatically. This 2D stability condition was discussed for the first time in section 5.1.2 of [5]. Also it is
easy to see that S and P satisfy automatically the EMT conservation di↵erential equation:
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This equation implies a number of integral relations between S(x?) and P (x?), in particular it is easy to show that:
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The combination � 1
2S(x?)+P (x?) has the meaning of the transverse force distribution (eigenvalue of 2D stress tensor).

From above equation we can conclude that this distribution must have at least one node. Number of other integral
relations between 2D force distributions can be easily derived using the general method described in Appendix A of
Ref. [1].

The Druck-term can be expressed in terms of 2D force distributions as:

D(0) = �m
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d2x?x

2
?S(x?) = 4m
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2
?P (x?). (14)

Surely the resulting Druck-term D(0) coincides with that obtained from 3D Breit frame force distributions:

D(0) = � 4
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d3r r2 p(r). (15)

Druck term via 3D Breit and 2D LF force distributions
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LIGHT FRONT FORCE DISTRIBUTIONS IN THE NUCLEON AS CHIRAL SOLITON

The large Nc argumentation by Witten [23, 24] justified that Nc quarks constituting a baryon can be considered in
a mean (non-fluctuating) field that does not change as Nc ! 1. In this picture the corresponding mean-field can be
considered as a classical one, i.e. as a “chiral soliton”.
The pioneering calculations of the pressure and shear force distributions in the large Nc nucleon were performed

in the chiral quark-soliton model [25] and in the Skyrme model in Refs. [26, 27]. More recently these studies were
extended to the nucleon in the nuclear matter [28–30], to �-baryon [31–33] and to the charmed baryons in Ref. [34].
As all these approaches employ the large Nc picture the relativistic corrections are parametrically suppressed by 1/Nc,
and all distributions can be obtained directly as functionals of the chiral mean-field.
We use here the results of Ref. [26] for 3D s(r) and p(r) to compute their light front counterparts using Eq. (7).

The results are shown on Fig 1 where the light front shear force S(x?) and pressure P (x?) are shown in the left panel.
On the right panel we show the results for the distribution of normal and transverse forces on light front. It is very
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Figure 1. The 2D pressure and share force distributions calculated in Skyrme model (left panel) and distribution of normal and
tangential 2D forces calculated in the same model (right panel).

interesting that the obtained light front distributions have the shapes very similar to their 3D counterparts (see e.g.
Figs. 3,4 of Ref. [26]). For example, the transverse force distribution has a node about the same position around
⇠ 0.4÷ 0.5 fm in both 3D and 2D, also both 3D and 2D pressure distributions have nodes at about the same position
of ⇠ 0.6÷ 0.7 fm. We see that in contrast to the liquid drop the reduction from 3D to 2D does not change the force
distributions qualitatively. It would be interesting to understand the reason for that.

From the left panel of Fig. 1 one can easily read o↵ the value of the 2D pressure P (x?) in the nucleon centre:

P (0) ' 70.0
MeV

fm2 . (29)

It is instructive to compare it with the corresponding 2D pressure at the origin for a large nucleus given in (27). The
line tension also can be easily computed with help of Eq. (24) with the result:

�(2D) ' 34.0
MeV

fm
. (30)

Again it is instructive to compare it with the result for a large nucleus (28). The 2D mean square mechanical radius is
scaled by the geometric factor of 2/3 relative to the 3D mechanical radius. One can show in the Skyrme model that
hx2

?icharge/hr2icharge = 2/3. Therefore, in 2D we obtain the same ratio of mechanical radius to charge one as in 3D.
The latter was estimated as ' 0.75 [1], hence we obtain:

hx2
?imech

hx2
?icharge

' 0.75 [Skyrme model] (31)

Given the simplicity of the 3D!2D reduction formula (7) the reader can easily obtain any other results for light
front force distributions from the results of Ref. [26]. In general, the Abel transformation relations (9,10) can used to
obtain 2D light front force distributions from any calculation of 3D Breit frame ones. For example, it is very easy to
obtain large x? asymptotic of light front force distributions from the large r asymptotic of p(r) and s(r) calculated in
chiral EFT, see Eq. (26) of Ref. [17].

21

nucleon – they are distinguished by the chirality of the tangential forces. It would be interesting to understand at the
microscopic level the physical reasons for the emergence of these two di↵erent regions.
In the lattice QCD study [184] a hybrid approach based on domain wall valence quarks with 2 + 1 flavors of

improved staggered sea quarks was used. The range 0.1GeV2
< �t < 1.2GeV2 was covered for pion masses from

760MeV down to 350MeV. Depending on the chiral extrapolation method the following values were obtained which
do not include disconnected diagrams: D

Q = �1.07 ± 0.25 using covariant baryon chiral perturbation theory, and
D

Q = �1.68± 0.22 using heavy baryon chiral perturbation theory at the physical value of the pion mass in MS scheme
at µ2 = 4GeV2. The quark contribution to the D-term from dispersion relations [185] refers to the same µ

2 and is in
the range �1.54 . D

Q . �1.27 in good agreement with the lattice result. Considering that the results from chiral
models (70) show the total D-term, the dispersion relation and lattice result agree well with these models [178, 180].
The nucleon EMT form factors A(t) and B(t) were also studied in approaches based on light front wave functions

such as AdS/QCD models or spectator models [186–191, 194–196]. Such models are often based on a light-front Fock
state expansion. Typically the form factors A(t) and B(t) can be evaluated, which are simply related to the helicity
non-flip and helicity flip matrix elements of the component T̂++ of the EMT. Being related to the stress tensor T̂ ij

the form factor D(t) naturally “mixes” good and bad light-front components and is described in terms of transitions
between di↵erent Fock state components in overlap representation. As a quantity intrinsically non-diagonal in a Fock
space, it is di�cult to study the D-term in approaches based on light-front wave-functions. This is due to the relation
of the D-term to internal dynamics: a complete description of a hadron requires the inclusion of all Fock components.

D. Size of the forces in the nucleon, and comparison with linear potential confinement forces

Very frequently, e.g. in colour tube models, the confinement forces are related to the linear potential Vconf(r) = �r,
where � ⇠ 1GeV/fm is estimated from the slope of meson Regge trajectories. Recently the spatial distribution of the
stress tensor for a heavy quark Q̄Q pair was directly measured on the lattice: the typical size of the forces ⇠ 1GeV/fm
was confirmed [205]. Such a linear interquark potential corresponds to a constant force between quarks F = �. Our
aim is to compare this force with the forces encoded in the stress tensor.
The spherical shell of radius r in the nucleon experiences the normal force Fn = 4⇡r2[ 23s(r) + p(r)] and tangential

force Ft = 4⇡r2[� 1
3s(r) + p(r)]. We use the chiral quark-soliton model (�QSM) results of Ref. [126] to compute the

corresponding forces. The result is shown on Fig. 7, we see that the maximally achieved strength is five times smaller
than the confining forces in a colour tube model.

E. Spin-1 hadrons

Light vector mesons were studied in Ref. [206] using light-front wave-functions obtained from an AdS/QCD model.
For the ⇢-meson the mean square radius of the energy density was found to be hr2iE = 0.21 fm2. This is significantly
smaller then the mean square charge radius of ⇢+ determined to be hr2ich = 0.53 fm2 in the same approach [207].

The GPDs for the deuteron were introduced in [192] and studied in details in Ref. [193]. The EMT form factors of
the deuteron were studied in Ref. [208] using a deuteron wave function from a softwall AdS/QCD model. The D-term
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Figure 7. The normal force Fn = 4⇡r2[ 23s(r) + p(r)] (solid) and tangential force Ft = 4⇡r2[� 1
3s(r) + p(r)] (doted) experienced

by a spherical shell of radius r in the nucleon computed in the �QSM.
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LIGHT FRONT FORCE DISTRIBUTIONS IN THE NUCLEON AS CHIRAL SOLITON

The large Nc argumentation by Witten [23, 24] justified that Nc quarks constituting a baryon can be considered in
a mean (non-fluctuating) field that does not change as Nc ! 1. In this picture the corresponding mean-field can be
considered as a classical one, i.e. as a “chiral soliton”.
The pioneering calculations of the pressure and shear force distributions in the large Nc nucleon were performed

in the chiral quark-soliton model [25] and in the Skyrme model in Refs. [26, 27]. More recently these studies were
extended to the nucleon in the nuclear matter [28–30], to �-baryon [31–33] and to the charmed baryons in Ref. [34].
As all these approaches employ the large Nc picture the relativistic corrections are parametrically suppressed by 1/Nc,
and all distributions can be obtained directly as functionals of the chiral mean-field.
We use here the results of Ref. [26] for 3D s(r) and p(r) to compute their light front counterparts using Eq. (7).

The results are shown on Fig 1 where the light front shear force S(x?) and pressure P (x?) are shown in the left panel.
On the right panel we show the results for the distribution of normal and transverse forces on light front. It is very
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Figure 1. The 2D pressure and share force distributions calculated in Skyrme model (left panel) and distribution of normal and
tangential 2D forces calculated in the same model (right panel).

interesting that the obtained light front distributions have the shapes very similar to their 3D counterparts (see e.g.
Figs. 3,4 of Ref. [26]). For example, the transverse force distribution has a node about the same position around
⇠ 0.4÷ 0.5 fm in both 3D and 2D, also both 3D and 2D pressure distributions have nodes at about the same position
of ⇠ 0.6÷ 0.7 fm. We see that in contrast to the liquid drop the reduction from 3D to 2D does not change the force
distributions qualitatively. It would be interesting to understand the reason for that.

From the left panel of Fig. 1 one can easily read o↵ the value of the 2D pressure P (x?) in the nucleon centre:

P (0) ' 70.0
MeV

fm2 . (29)

It is instructive to compare it with the corresponding 2D pressure at the origin for a large nucleus given in (27). The
line tension also can be easily computed with help of Eq. (24) with the result:

�(2D) ' 34.0
MeV

fm
. (30)

Again it is instructive to compare it with the result for a large nucleus (28). The 2D mean square mechanical radius is
scaled by the geometric factor of 2/3 relative to the 3D mechanical radius. One can show in the Skyrme model that
hx2

?icharge/hr2icharge = 2/3. Therefore, in 2D we obtain the same ratio of mechanical radius to charge one as in 3D.
The latter was estimated as ' 0.75 [1], hence we obtain:
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?icharge

' 0.75 [Skyrme model] (31)

Given the simplicity of the 3D!2D reduction formula (7) the reader can easily obtain any other results for light
front force distributions from the results of Ref. [26]. In general, the Abel transformation relations (9,10) can used to
obtain 2D light front force distributions from any calculation of 3D Breit frame ones. For example, it is very easy to
obtain large x? asymptotic of light front force distributions from the large r asymptotic of p(r) and s(r) calculated in
chiral EFT, see Eq. (26) of Ref. [17].
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nucleon – they are distinguished by the chirality of the tangential forces. It would be interesting to understand at the
microscopic level the physical reasons for the emergence of these two di↵erent regions.
In the lattice QCD study [184] a hybrid approach based on domain wall valence quarks with 2 + 1 flavors of

improved staggered sea quarks was used. The range 0.1GeV2
< �t < 1.2GeV2 was covered for pion masses from

760MeV down to 350MeV. Depending on the chiral extrapolation method the following values were obtained which
do not include disconnected diagrams: D

Q = �1.07 ± 0.25 using covariant baryon chiral perturbation theory, and
D

Q = �1.68± 0.22 using heavy baryon chiral perturbation theory at the physical value of the pion mass in MS scheme
at µ2 = 4GeV2. The quark contribution to the D-term from dispersion relations [185] refers to the same µ

2 and is in
the range �1.54 . D

Q . �1.27 in good agreement with the lattice result. Considering that the results from chiral
models (70) show the total D-term, the dispersion relation and lattice result agree well with these models [178, 180].
The nucleon EMT form factors A(t) and B(t) were also studied in approaches based on light front wave functions

such as AdS/QCD models or spectator models [186–191, 194–196]. Such models are often based on a light-front Fock
state expansion. Typically the form factors A(t) and B(t) can be evaluated, which are simply related to the helicity
non-flip and helicity flip matrix elements of the component T̂++ of the EMT. Being related to the stress tensor T̂ ij

the form factor D(t) naturally “mixes” good and bad light-front components and is described in terms of transitions
between di↵erent Fock state components in overlap representation. As a quantity intrinsically non-diagonal in a Fock
space, it is di�cult to study the D-term in approaches based on light-front wave-functions. This is due to the relation
of the D-term to internal dynamics: a complete description of a hadron requires the inclusion of all Fock components.

D. Size of the forces in the nucleon, and comparison with linear potential confinement forces

Very frequently, e.g. in colour tube models, the confinement forces are related to the linear potential Vconf(r) = �r,
where � ⇠ 1GeV/fm is estimated from the slope of meson Regge trajectories. Recently the spatial distribution of the
stress tensor for a heavy quark Q̄Q pair was directly measured on the lattice: the typical size of the forces ⇠ 1GeV/fm
was confirmed [205]. Such a linear interquark potential corresponds to a constant force between quarks F = �. Our
aim is to compare this force with the forces encoded in the stress tensor.
The spherical shell of radius r in the nucleon experiences the normal force Fn = 4⇡r2[ 23s(r) + p(r)] and tangential

force Ft = 4⇡r2[� 1
3s(r) + p(r)]. We use the chiral quark-soliton model (�QSM) results of Ref. [126] to compute the

corresponding forces. The result is shown on Fig. 7, we see that the maximally achieved strength is five times smaller
than the confining forces in a colour tube model.

E. Spin-1 hadrons

Light vector mesons were studied in Ref. [206] using light-front wave-functions obtained from an AdS/QCD model.
For the ⇢-meson the mean square radius of the energy density was found to be hr2iE = 0.21 fm2. This is significantly
smaller then the mean square charge radius of ⇢+ determined to be hr2ich = 0.53 fm2 in the same approach [207].

The GPDs for the deuteron were introduced in [192] and studied in details in Ref. [193]. The EMT form factors of
the deuteron were studied in Ref. [208] using a deuteron wave function from a softwall AdS/QCD model. The D-term
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Figure 7. The normal force Fn = 4⇡r2[ 23s(r) + p(r)] (solid) and tangential force Ft = 4⇡r2[� 1
3s(r) + p(r)] (doted) experienced

by a spherical shell of radius r in the nucleon computed in the �QSM.
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