Delta baryon photoproduction with twisted photons

Carl E. Carlson
William \& Mary

APCTP Focus Program in Nuclear Physics 2021 19-24 July 2021, Gyeongju, Korea

Talk based on work with Andrei Afanasev plus related work with Asmita Mukherjee,

Maria Solyanik-Gorgone, Christian
Schmiegelow, Ferdinand Kaler-Schmidt, Jonas Schulz, Hao Wang

Outline

- What are we talking about? Introduction to twisted photons.
- Do they really exist? Right now, yes, in atomic physics.
- Hadronic application: Photoproduction of $\Delta(1232)$ from nucleons.

Intro

- For plane wave photon states, we know that angular momentum along direction fo motion ("helicity") is just spin and just ± 1 (or $\pm \hbar$).
- Not true in general!
- Angular momentum along direction of motion can be any integer (times \hbar)
- Nor realized until 1992, Allen et al., PRA with 7600 citations (Google Scholar, July 17) and photon modes called Laguerre-Gaussian

Intro 2

- Could have been realized earlier
- Just for beginning, think of "scalar photons" (no polarization)
- 1987 JOSA-A Durnin: \exists non-diffractive waves that are not plane waves.
- "Non-diffractive" means waves moving in some direction (e.g., z-direction) w/o spreading in the transverse direction.

Intro 3

- Field satisfies wave equation. Say monochromatic (time dep. $e^{-i \omega t}$) and propagating in z-direction (z-dependence $e^{i \beta z}$).

$$
0=\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \psi(t, \vec{x})=\left(-\frac{\omega^{2}}{c^{2}}+\beta^{2}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) \psi(t, \vec{x})
$$

- Solvable: $\psi(t, \vec{x})=e^{i \beta z-\omega t} J_{0}(\alpha \rho) \quad\left[\alpha^{2}=\frac{\omega^{2}}{c^{2}}-\beta^{2}, \rho^{2}=x^{2}+y^{2}\right]$
- Bessel function wavefront does not spread.

Intro 4

- Later (past '92) realized one could spin up the result.

$$
\psi(t, \vec{x})=e^{i \beta z-\omega t} e^{i m \phi} J_{m}(\alpha \rho)
$$

- Orbital angular momentum operator $L_{z}=-i \hbar \partial / \partial \phi$ and

$$
L_{z} \psi(t, \vec{x})=m \hbar \psi(t, \vec{x}) \quad[m=\text { any integer }]
$$

- Fourier transform is simple

$$
\left[\kappa=\left|\vec{k}_{\perp}\right|\right]
$$

$$
\tilde{\psi}(t, \vec{k})=\int d^{3} x e^{i \vec{k} \cdot \vec{x}} \psi(t, \vec{x})=\ldots \delta\left(k_{z}-\beta\right) \delta(\kappa-\alpha) i^{-m} e^{i m \phi_{k}}
$$

- The allowed wave vectors \vec{k} form a cone (Opening angle θ_{k} is "pitch angle")

Intro 5

- Also, Hilbert space representation. Characterize state by κ, m, k_{z} :

$$
\left|\kappa, m, k_{z}\right\rangle=A_{0} \int \frac{d \phi_{k}}{2 \pi} i^{-m} e^{i m \phi_{k}}|\vec{k}\rangle
$$

(last is plane wave state)

- As exercise, can recover c.s. wave function using field operator $\hat{\psi}(x)$,

$$
\psi_{\kappa m k_{z}}(t, \vec{x})=\langle 0| \hat{\psi}(x)\left|\kappa, m, k_{z}\right\rangle=A_{0} e^{i\left(k_{z} z-\omega t\right)} e^{i m \phi} J_{m}(\kappa \rho)
$$

- (Used $\left.\langle 0| \hat{\psi}(x)|\vec{k}\rangle=e^{-i k x}\right)$

Intro 6

- Real photon has polarization. Easy to include in momentum space,

$$
\left|\gamma\left(\kappa, m, k_{z}, \Lambda\right)\right\rangle=A_{0} \int \frac{d \phi_{k}}{2 \pi} i^{-m} e^{i m \phi_{k}}|\gamma(\vec{k}, \Lambda)\rangle \quad[\Lambda=\text { helicity }]
$$

- Can get coordinate space potential from

$$
\begin{aligned}
& \quad A_{k n k_{k} \Lambda}^{\mu}(x)=\langle 0| \hat{A}^{\mu}(x)\left|\gamma\left(\kappa, m, k_{z}, \Lambda\right)\right\rangle \\
& \text { with }\langle 0| \hat{A}^{\mu}(x)|\gamma(\vec{k}, \Lambda)\rangle=\epsilon_{\vec{k} \Lambda}^{\mu} e^{-i k x}
\end{aligned}
$$

- (Expressions complicated by polarization vectors depending on ϕ_{k}, but analytically given in terms of Bessel functions.)

Intro 7 - pictures

$m_{\gamma}-\Lambda=-1$

$m_{\gamma}-\Lambda=-2$

Surfaces of constant phase

Azimuthal component of Poynting vector magnitude

Azimuthal component of Poynting vector magnitude and direction

Names: Twisted photons, Vortex photons, Structured light

Intro 8

- Have photons with $m_{\gamma} \hbar$ angular momentum in direction of propagation
- Applications?
- Take advantage of selection rules.
E.g., in photoproduction or photoexcitation
$\underset{\text { plane wave phooon }}{\overrightarrow{m_{i}}} \xrightarrow[\overrightarrow{m_{t}}]{\text { target }} \quad m_{f}=m_{i} \pm 1 \quad$ only

Intro 9-more on selection rules

- Could selectively excite and study high angular momentum final states w/o background of low angular momentum states
- Thoughts about hitting targets off vortex axis:
- Plane wave: there is no off-axis
- Vortex states: Recall plots of Poynting vectors. There is local transverse momentum. Can give sideways kick and OAM to target.
- On-axis: all angular momentum must go to internal excitation
- Off-axis: angular momentum shared between internal excitation of target and OAM of center of mass of final state.

Atomic studies

- Can we do it?
- Learn from atomic physics.
- Can localize atoms in Paul trap to few 10 's of nanometers
- "Hole" in middle of vortex photons are few wavelengths
i.e., few times several hundred nm.
- Hence localization very good.

Atomic studies 2

- Acknowledgement: I learned a lot from the QUANTUM group (Ferdinand Schmidt-Kaler and co) at the JGU Mainz
- Get visible wavelength twisted light from laser with circular polarization passing through spiral wave plates or tuning fork diffraction grating.

A spiral phase plate can generate a helically phased beam from a Gaussian. In this case $\ell=0 \rightarrow \ell=2$.

Atomic studies 3

- Excellent study ion is ${ }^{40} \mathrm{Ca}^{+}$
- Ground state has $4 s_{1 / 2}$ valence electron
- Excite to $3 d_{5 / 2}$ with 729 nm photons
- $3 d_{5 / 2}$ (of course) has $m_{f}=-5 / 2,-3 / 2, \ldots, 5 / 2$
- Zeeman split levels by magnetic field and determent m_{f} from small changes in γ-energy needed to excite them.

Atomic studies 4

- Hence $\Delta m=m_{f}-m_{i}$ measurable. m_{γ} known.

$$
\Delta m=m_{\gamma} \quad \text { testable }
$$

Fig. from Schmiegelow et al., Nat. Comm. (2016)

Atomic studies 5

- In addition there is off-axis data for many m_{γ}, m_{f}, m_{i}
- Have $m_{\gamma}= \pm 2, \pm 1,0$ (two versions), $m_{f}=5$ values (one missing), $m_{i}= \pm 1 / 2$. 60 plots, among them for $m_{\gamma}=-2, \Lambda=-1, m_{i}=-1 / 2$

Hadronic physics

- Generic: selective excitation of high spin baryon states
- Specific possibility: in $\gamma+N \rightarrow \Delta$, isolate E2 transitions from dominant M1
- Notes: N is $J^{P}=(1 / 2)^{+} ; \Delta$ is $J^{P}=(3 / 2)^{+}$
- Hence $N \rightarrow \Delta$ photoproduction requires M1 or E2 transitions
- M1 means angular momentum change $L=1$, parity $(-1)^{L+1}=+$
- E2 means angular momentum change $L=2$, parity $(-1)^{L}=+$

Hadronic physics 2

- M1 amplitude often order $(k a)^{2} \sim(a / \lambda)^{2}$ compared to typical E1 scale
- Atomic: λ (wavelength) >> a (linear scale of target), and M1 small
- Nuclear and particle physics: λ and a scales comparable
- For $N \rightarrow \Delta$, both mostly orbital S-states; M1 only needs spin flip and dominates
- The E2 need two units of orbital angular momentum, involving the (small) D-state of the N or Δ, hence small. But important.

Hadronic physics 3

- How actually to calculate?
- Will start with atomic-like treatment (ignoring recoil), and then correct for recoil (in archived paper if not in talk).
- Will work to relate twisted photon amplitudes to plane wave helicity amplitudes, which in turn are related to M1 and E2 amplitudes

Hadronic physics 4

- Put target at origin with twisted photon with vortex line passing through $\vec{b}=b_{\perp}$ in the $x-y$ plane,

$$
\left|\gamma\left(\kappa m_{\gamma} k_{z} \Lambda \vec{b}\right)\right\rangle=A_{0} \int \frac{d \phi_{k}}{2 \pi}(-i)^{m_{r}} e^{i m_{r} \phi_{k}-i \vec{k} \cdot \vec{b}}|\gamma(\vec{k}, \Lambda)\rangle
$$

- Want amplitude

$$
\mathscr{M}=\left\langle\Delta\left(m_{f}\right)\right| \mathscr{H}(0)\left|N\left(m_{i}\right) ; \gamma\left(\kappa m_{\gamma} k_{z} \Lambda \vec{b}\right)\right\rangle
$$

- \mathscr{H} is interaction Hamiltonian; nucleon is at rest; $m_{i} \& m_{f}$ are spin projections in z-direction.

Hadronic physics 5

- Plane wave states obtained by rotating states $\mathrm{w} / \mathrm{momentum}$ in z-direction,

$$
|\gamma(\vec{k}, \Lambda)\rangle=R\left(\phi_{k}, \theta_{k}, 0\right)|\gamma(k \hat{z}, \Lambda)\rangle=R_{z}\left(\phi_{k}\right) R_{y}\left(\theta_{k}\right)|\gamma(k \hat{z}, \Lambda)\rangle
$$

using Wick (1962) phase convention.

- Rewrite the previous amplitude, since \mathscr{H} is rotation invariant, in terms of photon states in z-direction and rotated N and Δ states.
- Since the nucleon is at rest, rotations are given in terms of Wigner functions

$$
R^{\dagger}\left(\phi_{k}, \theta_{k}, 0\right)\left|N\left(m_{i}\right)\right\rangle=e^{i m_{i} \phi_{k}} \sum_{m_{i}^{\prime}} d_{m_{i}, m_{i}^{\prime}}^{1 / 2}\left(\theta_{k}\right)\left|N\left(m_{i}^{\prime}\right)\right\rangle
$$

(all spins projected along z-axis).

Hadronic physics 6

- Can do the same for Δ, if we neglect recoil

$$
\left\langle\Delta\left(m_{f}\right)\right| R\left(\phi_{k}, \theta_{k}, 0\right)=\sum_{m_{f}^{\prime}}\left\langle\Delta\left(m_{f}^{\prime}\right)\right| e^{-i m_{f} \phi_{k}} d_{m_{f}, m_{f}^{\prime}}^{3 / 2}\left(\theta_{k}\right)
$$

- Put together. Do ϕ_{k} integral to obtain Bessel function. Result is

$$
\mathscr{M}=A_{0}(-i)^{m_{f}-m_{i}} e^{i\left(m_{y}+m_{i}-m_{f}\right) \phi_{b}} J_{m_{f}-m_{i}-m_{r}}(\kappa b) \sum_{m_{i}^{\prime}} d_{m_{f}, m_{i}^{\prime}+\Lambda}^{3 / 2}\left(\theta_{k}\right) d_{m_{i}, m_{i}^{\prime}}^{1 / 2}\left(\theta_{k}\right) \mathscr{M}_{m_{i}^{\prime}, \Lambda}^{(\mathrm{pw})}
$$

- The plane wave amplitude comes from

$$
\left\langle\Delta\left(m_{f}^{\prime}\right)\right| \mathscr{H}(0)\left|N\left(m_{i}^{\prime}\right) ; \gamma(k \hat{z}, \Lambda)\right\rangle=\mathscr{M}_{m_{i}^{\prime}, \Lambda}^{(\mathrm{pw})} \delta_{m_{f}^{\prime}, m_{i}^{\prime}+\Lambda}
$$

Hadronic physics 7

- There are two independent plane wave amplitudes (and others connected by parity):

$$
\begin{aligned}
\mathscr{M}_{1 / 2,1}^{(\mathrm{Pw})} & =-\frac{3 e E_{\gamma}}{2} \sqrt{\frac{2}{3}}\left(G_{M}^{*}+G_{E}^{*}\right) \\
\mathscr{M}_{-1 / 2,1}^{(\mathrm{pw})} & =-\frac{\sqrt{3} e E_{\gamma}}{2} \sqrt{\frac{2}{3}}\left(G_{M}^{*}-3 G_{E}^{*}\right)
\end{aligned}
$$

- The M1 and E2 amplitudes represented by Jones-Scadron form factors G_{M}^{*} and G_{E}^{*}, resp., and

$$
E_{\gamma}=\left(m_{\Delta}^{2}-m_{N}^{2}\right) /\left(2 m_{N}\right)=2 \pi / \lambda
$$

Hadronic physics 8

- Can calculate. With $m_{\gamma}= \pm 2, \pm 1,0$ (two versions), $m_{f}=4$ values, and $m_{i}= \pm 1 / 2$, could make 48 plots. Show 2. Done for $G_{E}^{*} / G_{M}^{*}=3 \%$.

- No M1 contribution for $\Delta m=2$ case (right hand plot)

Hadronic physics 9

- Comments (only) about recoil. Corrections worked out in archived work. Size depends on small components of Δ wave function squared, nominally $\left(E_{\gamma} / 2 M_{\Delta}\right)^{2} \approx 1.9 \%$. Not so serious.

$m_{\gamma}=2, \wedge=1, m_{\Delta}=3 / 2, m_{p}=-1 / 2$

Last slide

- One attitude: stick to plane wave photons (momentum eigenstate photons) so that $m_{\gamma}= \pm 1$ only. Very standard.
- Explore what can be done with an extra degree of freedom.
- Communications.
- Atomic physics. Can reverse an use final QN and off-axis behavior as diagnostic of structured photon state.
- Hadronic physics
- Higher spin states
- Isolate small amplitudes, as E2 in Δ photoproduction.
- Beam requirements not trivial and not currently possible. But there is a future.

Extra

Target localization

- Want target at rest and stationary. But we know quantum mechanics. Best we can do is

$$
\Delta x \Delta p \geq \frac{1}{2} \hbar \approx \frac{1}{2} 200 \mathrm{MeV} \mathrm{fm}
$$

- A minimal possibility: $\Delta x \approx 3 \mathrm{fm}$ and $\Delta p \approx 30 \mathrm{MeV}$. Could be o.k.
- For Δ kinetic energy, $\Delta E_{\Delta} \approx 2 E_{\gamma} \Delta p /\left(2 M_{\Delta}\right) \approx 7 \mathrm{MeV}$, small compared to Δ width.
- Amplitude plots have minima a few or several λ, and $\lambda=3.65 \mathrm{fm}$. So 3 fm for Δx acceptable, and can adjust. See also Zheludev et al on superresolution ideas

Unpolarized results

$$
A_{\sigma}^{(\Lambda)}=\frac{\sigma_{\Lambda=1}-\sigma_{\Lambda=-1}}{\sigma_{\Lambda=1}+\sigma_{\Lambda=-1}}
$$

Twisted vector potential

- Components for ($\kappa, m_{\gamma}, k_{z}, \Lambda$) and $b=0$, Coulomb gauge.
- $A_{\rho}=i \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{l} \phi\right)}\left[\cos ^{2} \frac{\theta_{k}}{2} J_{m_{r}-\Lambda}(\kappa \rho)+\sin ^{2} \frac{\theta_{k}}{2} J_{m_{r}+\Lambda}(\kappa \rho)\right]$
. $A_{\phi}=-\Lambda \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{i} \phi\right)}\left[\cos ^{2} \frac{\theta_{k}}{2} J_{m_{2}-\Lambda}(\kappa \rho)-\sin ^{2} \frac{\theta_{k}}{2} J_{m_{l}+\Lambda}(\kappa \rho)\right]$
- $A_{z}=\Lambda \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{i}, \phi\right)} \sin \theta_{k} J_{m_{r}}(\kappa \rho)$

