APCTP Focus Program in Nuclear Physics 2021: Part I

Hadron properties in a nuclear medium from the quark and gluon degrees of freedom

14-16 July 2021

Strong Interactions of Quarks and Gluons

J. Skullerud, Orlando Oliveira, Andre Sternbeck, Paulo J. Silva

We study the quark-gluon vertex in the limit of vanishing gluon momentum using lattice QCD with two flavors for several lattice spacings and quark masses

QCD is the strong interaction sector in Standard Model

Quark-Gluon Vertex

IR behaviour of **QCD** is exciting

Non-Perturbative Methods: SDE, Lattice, Effective Field Theories

Lattice QCD Calculations

VS

Schwinger-Dyson Calculations

BOTH starts from first principles(Partition Function):

$$Z = \int DA_{\mu} D\Psi D\overline{\Psi} \ e^{-S_{QCD}}$$

Extrapolation to continuum is needed

Control:

Finite volume effects

Lattice discretization effects

Non-Perturbative Vertex (SDE)

$$\Lambda_{\mathbf{F}}^{\mu}(\mathbf{p},\mathbf{k},\mathbf{q}) = \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{4}} \, \lambda^{\mathbf{i}}(\mathbf{p^{2}},\mathbf{k^{2}},\mathbf{q^{2}},\xi,\mathbf{m}) \, \mathbf{L}_{\mathbf{i}}^{\mu}(\mathbf{p},\mathbf{k}) + \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{8}} \, \tau^{\mathbf{i}}(\mathbf{p^{2}},\mathbf{k^{2}},\mathbf{q^{2}},\xi,\mathbf{m}) \, \mathbf{T}_{\mathbf{i}}^{\mu}(\mathbf{p},\mathbf{k})$$

Ghost-Quark Scattering Kernel form factors

Bare Vertex $(\Lambda_{\mu}) = \gamma_{\mu}$ + bare gluon propagator (Rainbow-Ladder app.). Very popular!

Ball-Chiu Vertex (Non-Transverse Part)

(QED) (QCD) $\lambda_1^M(p^2,k^2) = \frac{1}{2} \left[A(k^2) + A(p^2) \right] ,$ $\lambda_1(p^2, 0, p^2) = G(0) \left[A(p^2)\chi_0(p^2, 0, p^2) + B(p^2) \left(\chi_1(p^2, 0, p^2) + \chi_2(p^2, 0, p^2) \right) - 2p^2 A(p^2)\chi_3(p^2, 0, p^2) \right]$ $\lambda_2^M(p^2,k^2) = \frac{1}{2(k^2 - p^2)} \left[A(k^2) - A(p^2) \right] \,,$ $\lambda_3^M(p^2,k^2) = \frac{-1}{k^2 - n^2} \left[M(k^2) A(k^2) - M(p^2) A(p^2) \right],$ $\lambda_4^M(p^2,k^2) = 0$

The University of Adelaide

 $\tau_{\mathbf{6}}(\mathbf{p}, \mathbf{k})$ (MR) Curtis-Pennington Vertex (Transverse Part) :

 $[\tau_2, \tau_3, \tau_6, \tau_8](\mathbf{p}, \mathbf{q}, \mathbf{k})$ Kizilersu-Penington Vertex (Transverse Part) :

> In Continuum... Non-Perburbative (DSE) Ball_Chiu, Curtis-Pennington, C.D. Roberts, P. Tandy, P. Maris, Haeri, H. Matevosyan,-A. Thomas, A.Bashir, Kizilersu-Pennington, R. Williams, R. Alkofer et.al., J. Pawlowski, C. Aguilar, D. Binosi, D. Ibanez, J. Papavassiliou ...

Slide 8

Lattice action

- Wilson gauge action
- (Sheikholeslami-Wohlert) clover fermions

$$S_{SW} = S_W - i\frac{a}{4}g_0 c_{SW} \sum_x \sum_{\mu\nu} \overline{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}(x)\psi(x)$$

In Continuum

 $\overline{\psi}(x) \left(i \not D + m \right) \psi(x) + \overline{\psi}(x) D^2 \psi(x) + \overline{\psi}(x) \sigma_{\mu\nu} F_{\mu\nu}(x) \psi(x)$

Other fermion actions such as Staggered, overlap fermions are used in different studies...

However continuum limit must stay the same

Non-Perturbative Vertex (from LATTICE)

Quark-gluon vertex on the lattice :

$$\Lambda^{\mathbf{a},\mathbf{lat.}}_{\mu}(\mathbf{p},\mathbf{q}) = \mathbf{S}_{\mathbf{R}}(\mathbf{p})^{-1} \mathbf{V}^{\mathbf{a}}_{\nu}(\mathbf{p},\mathbf{q}) \mathbf{S}_{\mathbf{R}}(\mathbf{p}+\mathbf{q})^{-1} \mathbf{D}(\mathbf{q})^{-1}_{\nu\mu}$$

Unamputated vertex $V^a_{\mu}(p,q) = << S_R(p;U)A^a_{\mu}(q) >>$

Transverse Projection

 $D_{\mu\nu}^{-1}$ does not exist, so we will be looking at transverse projection

$$\tilde{\Lambda}^T_{\mu}(p,k,q) = P^T_{\mu\nu}(q)\Lambda_{\nu} = \left(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)\Lambda_{\nu}(p,k,q)$$

Some of the Form Factors in Special Kinematics in Landau gauge are calculated in quenched QCD

J.Skullerud, A.Kizilersu, JHEP09(2002)013 J. Skullerud, P. Bowman, A.Kizilersu, D.Leinweber, A.Williams, JHEP04(2003)047

Lattice Parameters of Gauge Ensembles in this Study (N_f=2)

Lattice action

- Wilson gauge action
- Wilson clover fermions
- $\mathcal{O}(\alpha)$ improved rotated propagator
- Landau gauge ($\xi = 1$)

Name	β	κ	$a [\mathrm{fm}]$	V	$m_{\pi} [\text{MeV}]$	$m_q [{ m MeV}]$	$N_{\rm cfg}$	$N_{ m src}$
L08	5.20	0.13596	0.081	$32^3 \times 64$	280	6.2	900	4
H07	5.29	0.13620	0.071	$32^3 \times 64$	422	17.0	900	4
L07	5.29	0.13632	0.071	$32^3 \times 64$	295	8.0	908	4
L07-64	5.29	0.13632	0.071	$64^3 \times 64$	290	8.0	750	2
H06	5.40	0.13647	0.060	$32^3 \times 64$	426	18.4	900	2
Q07	6.16	0.13400	0.071	$32^3 \times 64$	1000	130	998	4

Acknowledgements

N_f = 2 congurations provided by RQCD collaboration (Regensburg), S. Bali et all, Phys Rev D91, 054501 (2014)

A. Kizilersu, O. Oliveira, P.J. Silva, J. Skullerud and A. Sternbeck, Phys.Rev.D103 (2021)114515

Form Factor Extraction

Soft Gluon Kinematics :
$$(q_{\mu} = 0, k_{\mu} = p_{\mu})$$

$$(\tilde{\Lambda}^a_{\mu}) = -ig_0 \left(\lambda_1 \left[\gamma_{\mu}\right] + \lambda_2 \left[-4 \not p p_{\mu}\right] + \lambda_3 \left[-2ip_{\mu}\right]\right)$$

Covariant Form factors:

•
$$\lambda_1 = \frac{1}{(-ig_0)} \left\{ \frac{1}{3} \left[\operatorname{Tr}_4(\gamma_\mu \overline{\Lambda}_\mu) - \frac{p_\mu p_\nu}{p^2} \operatorname{Tr}_4(\gamma_\nu \tilde{\Lambda}_\mu) \right] \right\}$$

• $\lambda_2 = \frac{1}{(-ig_0)} \left\{ \frac{1}{3p^2} \left[\operatorname{Tr}_4(\gamma_\mu \overline{\Lambda}_\mu) - 4 \frac{p_\mu p_\nu}{p^2} \operatorname{Tr}_4(\gamma_\nu \tilde{\Lambda}_\mu) \right] \right\}$
• $\lambda_3 = \frac{1}{(-ig_0)} \left\{ \frac{i}{2} \frac{p_\mu}{p^2} \operatorname{Tr}_4(I \overline{\Lambda}_\mu) \right\}$

Form Factor Extraction

Soft Gluon Kinematics :
$$(q_{\mu} = 0, k_{\mu} = p_{\mu})$$

$$(\tilde{\Lambda}^a_{\mu}) = -ig_0 \left(\lambda_1 \left[\gamma_{\mu}\right] + \lambda_2 \left[-4 \not p p_{\mu}\right] + \lambda_3 \left[-2ip_{\mu}\right]\right)$$

Covariant Form factors:

Non-covariant Form factors:

$$\lambda_{1} = \frac{1}{(-ig_{0})} \left\{ \frac{1}{3} \left[\operatorname{Tr}_{4}(\gamma_{\mu}\overline{\Lambda}_{\mu}) - \frac{p_{\mu}p_{\nu}}{p^{2}} \operatorname{Tr}_{4}(\gamma_{\nu}\tilde{\Lambda}_{\mu}) \right] \right\}$$

$$\lambda_{1} = \frac{1}{(-ig_{0})} \left\{ \left[\operatorname{Tr}_{4}(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \right] \right\}$$

$$\lambda_{2} = \frac{1}{(-ig_{0})} \left\{ \frac{1}{3p^{2}} \left[\operatorname{Tr}_{4}(\gamma_{\mu}\overline{\Lambda}_{\mu}) - 4\frac{p_{\mu}p_{\nu}}{p^{2}} \operatorname{Tr}_{4}(\gamma_{\nu}\tilde{\Lambda}_{\mu}) \right] \right\}$$

$$\lambda_{2} = \frac{1}{(-ig_{0})} \left\{ -\frac{1}{4p^{2}} \frac{p_{\alpha}p_{\mu}}{p^{2}} \left[\operatorname{Tr}_{4}(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \right]_{\alpha\neq\mu} \right\}$$

$$\lambda_{3} = \frac{1}{(-ig_{0})} \left\{ \frac{i}{2} \frac{p_{\mu}}{p^{2}} \operatorname{Tr}_{4}(I\overline{\Lambda}_{\mu}) \right\}$$

$$\lambda_{3} = \frac{1}{(-ig_{0})} \left\{ \frac{i}{2} \frac{p_{\mu}}{p^{2}} \operatorname{Tr}_{4}(I\overline{\Lambda}_{\mu}) \right\}$$

$$MOM \operatorname{Renormalisation:} \lambda_{1}^{R}(\mu^{2}, 0, \mu^{2}) = 1$$

$$\Gamma_{\mu}^{\operatorname{lat}}(p, k, q) = Z_{1}\Gamma_{\mu}^{R}(p, k, q)$$

The University of Adelaide

Slide 13

Continuum form factors

$\begin{pmatrix} \lambda_1 &= \frac{1}{(-ig_0)} \left\{ \left[Tr_4(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \right] \Big|_{\substack{\alpha=\mu\\p_{\mu}=0}} \right\} \\ \lambda_2 &= \frac{1}{(-ig_0)} \left\{ -\frac{1}{4p^2} \frac{p_{\alpha}p_{\mu}}{p^2} \left[Tr_4(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \Big|_{\alpha\neq\mu} \right] \right\} \\ \lambda_3 &= \frac{1}{(-ig_0)} \left\{ \frac{i}{2} \frac{p_{\mu}}{p^2} Tr_4(I\overline{\Lambda}_{\mu}) \right\}$

Tree-level corrected, lattice equivalents of the form factors :

$$\lambda_{1}(p^{2}, 0, p^{2}) = \frac{\mathrm{Im}}{g_{0}} \left\{ \left[\mathrm{Tr}_{4}(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \right] \Big|_{\substack{\alpha=\mu\\p_{\mu}=0}} \right\} / \lambda_{1}^{(0)}$$

$$\lambda_{2}(p^{2}, 0, p^{2}) = \frac{\mathrm{Im}}{g_{0}} \left\{ -\frac{1}{4K(p)^{2}} \frac{K_{\alpha}(p)K_{\mu}(p)}{K(p)^{2}} \left[\mathrm{Tr}_{4}(\gamma_{\alpha}\overline{\Lambda}_{\mu}) \Big|_{\alpha\neq\mu} \right] \right\} - \left(\lambda_{2}^{(0)} + \overline{\lambda}_{2(\mu)}^{(0)} \right)$$

$$\lambda_{3}(p^{2}, 0, p^{2}) = \frac{\mathrm{Re}}{(-g_{0})} \left\{ \frac{1}{2} \frac{K_{\mu}(p)}{K^{2}(p)} \mathrm{Tr}_{4}(I\overline{\Lambda}_{\mu}) \right\} - \left(\lambda_{3}^{(0)} + \overline{\lambda}_{3(\mu)}^{(0)} \right)$$

Lattice tree-level form factors

$$\lambda_{1}^{(0)} = F(p) \left(1 + c_{q}^{2} a^{2} K^{2}(p) \right)^{2}$$

$$\lambda_{2}^{(0)} + \overline{\lambda}_{2(\mu)}^{(0)} = a^{2} F(p) \left[-c_{q} \left(1 - c_{q}^{2} a^{2} K^{2}(p) \right) + 2c_{q}^{2} a C_{\mu}(p) \right]$$

$$\lambda_{3}^{(0)} + \overline{\lambda}_{3,(\mu)}^{(0)} = \frac{a}{2} F(p) \left[\left(1 - c_{q}^{2} a^{2} K^{2}(p) \right)^{2} - 4c_{q}^{2} a^{2} K^{2}(p) - 4c_{q} \left(1 - c_{q}^{2} a^{2} K^{2}(p) \right) C_{\mu}(p) \right]$$

Quark Propagator in Landau Gauge

In Continuum

In Discrete

$$S_{F}(p) = \frac{Z(p^{2})}{i \not p + M(p^{2})} \qquad S^{L}(pa) = \frac{Z^{L}(pa)}{ia \not K(p) + aM^{L}(pa)} \\ = \frac{1}{A(p^{2})i \not p + B(p^{2})} \qquad K_{\mu}(p) \equiv \frac{1}{a} sin(p_{\mu}a)$$

Quark wave function renormalization Z(p) in Landau Gauge (N_f=2), tree-level corrected

Quark Mass function M(p) in Landau Gauge ($N_f=2$), tree-level corrected

$$S_F(p) = \frac{Z(p^2)}{\not p - M(p^2)}$$

$M = 349.7 \pm 5.2 \text{ MeV}$ (*a*) p = 136 MeV for $m_{\pi} = 290 \text{ MeV}$

All 4 ensembles on the $32^3 \times 64$ volume

Perturbative One-Loop Form Factors in Soft Gluon Kinematics

m_=17MeV

m_=40MeV

10

J.S.Ball and T.W. Chiu, Phys.Rev.D22, 2542(1980) A.Kizilersu, M.Reenders and M.R.Pennington, Phys.Rev.D52,1242 (1995). (QED) A.I.Davydychev, P.Osland and L.Saks, Phys.Rev.D63,014022 (2001) (QCD) J.A.Gracey, Phys.Rev.D90,025014(2014) (QCD)

Tree Level Corrected vs Uncorrected Form Factors

Tree Level Corrected vs Uncorrected Form Factors

Renormalised

$\Gamma_{\mu}(p,q,k) = Z_1 \Gamma_{\mu}^R(p,q,k) \qquad \lambda_1^R(\mu^2, 0, \mu^2) = 1$

Quenched vs Dynamical

 $N_{\rm f}$ =0 vs. $N_{\rm f}$ =2 (a=0.07 fm)

Quenched vs Dynamical

 $N_f = 0$ vs. $N_f = 2$

(a=0.07 fm)

$$\lambda_1^{BC} = A(p^2)$$

$$\lambda_2^{BC} = -\frac{1}{2} \frac{dA(p^2)}{dp^2}$$

$$\lambda_3^{BC} = \frac{dB(p^2)}{dp^2}$$

Quark Mass Dependence

discret./Volume Dependence

(a=0.07 fm)

Lattice Spacing

a=0.08 fm, m_{π} =280MeV

a=0.07 fm, m_=295MeV

a=0.07 fm, m_{π} =422MeV

a=0.06 fm, m_=426MeV

Dimensionless Form Factors

Covariant Form Factor

PRELIMINARY

CONCLUSION

First ever study of Quark-Gluon Vertex in Soft Gluon Kinematics for Landau Gauge N_f=2 dynamical fermions

Soft Gluon Kinematics : $(q_{\mu} = 0, k_{\mu} = p_{\mu})$

 $\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}, \lambda_{\mathbf{3}}, \lambda_{\mathbf{4}} = \mathbf{0}$

 λ_1 is significantly enhanced in the IR this enhancement is stronger than in the quenched approximation and increases as the chiral limit is approached

 λ_2 exhibits an infrared strength smaller than λ_1 the enhancement increases as the continuum, infinite-volume, and chiral limits are approached

 λ_3 shows considerably infrared strength larger than in the quenched approximation, increases as the continuum limit is approach

Orthogonal Kinematics : $q \cdot P = 0$ $k^2 = p^2$ $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4, \tau_6, \tau_5, \tau_7$

THE UNIVERSITY of ADELAIDE

CRICOS PROVIDER NUMBER 00123M

Landau gauge

GLUON PROPAGATOR

O. Oliveira, P. Bicudo, J Phys G38, 045003 (2011)

GHOST PROPAGATOR

Attilio Cucchieri, David Dudal, Tereza Mendes,a Orlando Oliveira, Martin Roelfs and Paulo J. Silva, POS Lattice 2018, 252

