Heavy tetra and penta quarks

Atsushi Hosaka RCNP, Osaka University ASRC, JAEA

APCTP Focus Program in Nuclear Physics 2021 Part I Hadron properties in a nuclear medium from the quark and gluon degrees of freedom

1. Introduction

- 2. Quasi-stable hidden charm hadron $\overline{c}cuud: P_c$
- 3. Stable doubly heavy hadron $bb\overline{u}\overline{d}$: T_{bb}
- 4. Summary

1. Introduction

Many (multi-quark) hadrons with heavy quarks

Excited states

Example: Charmonium-like states

What to be asked

Questions:

- Do they exist?
- If they do, which ones?
- What is their internal structure?
- How best to look for them?

Marek Karliner, QNP conference, 2018@Tsukuba

Answer in part (for multi-quark systems) in this talk:

- $\overline{Q}Q$ may form quasi-stable hadrons $\rightarrow \overline{c}cuud: P_{\overline{c}c}$
- QQ may for stable hadrons $\rightarrow bb\overline{u}\overline{d}$: T_{bb}

2. Quasi-stable hidden charm hadron $-\overline{c}cuud: P_{\overline{c}c}$ —

Both OPEP (2nd order) and 5q: attraction OPEP: Spin splittings APCTP Focus Program in NP21, July 14-16, 2021

Result

- $\Sigma_c D$ singlet and $\Sigma_c D^*$ doublet well agree with data with predicted spin-parity
- $\Sigma_c^* D$ singlet and $\Sigma_c^* D^*$ triplet are predicted
- OPEP and 5q interactions are both important for binding
- Widths and spin-splittings are due to OPEP
- Decay into $J/\psi p$: Open charm \rightarrow Hidden charm

A feature — Rearrange of $Q\overline{Q}qqq$

d-u

Binding strength

 Λ_{QCD} : Colored light degrees

~10 MeV: Colorless hadrons

 $M(P_c) > M(J/\psi) + M(p)$ $Q\overline{Q}qqq$ survive quasi-stably

Strong $\overline{Q}Q$ attraction $\rightarrow 1/2$ for QQ

Stable $QQ'\overline{qq}'$

Q. Meng et al, PLB 814 (2021) 136095

Quark model solved precisely

$$H = \sum_{i}^{4} \left(m_{i} + \frac{\boldsymbol{p}_{i}^{2}}{2m_{i}} \right) - T_{G}$$
$$- \frac{3}{16} \sum_{i < j=1}^{4} \sum_{a}^{8} \left((\lambda_{i}^{a} \cdot \lambda_{j}^{a}) \underline{V_{ij}(\boldsymbol{r}_{ij})} \right)$$

$$\frac{V_{ij}(\mathbf{r})}{+\frac{2\pi\kappa'}{3m_im_j}} = -\frac{\kappa}{r} + \lambda r^p - \Lambda$$

Conventional mesons

Table 1

The parameters of the Hamiltonian and the calculated masses (Cal) of heavy mesons compared with their experimental values (Exp).

Parameters		Masses (Me	Masses (MeV)			
			Cal	Exp		
$m_{u,d}$ (GeV)	0.277	$\eta_b(0^-)$	9375	9399		
m_s (GeV)	0.593	$\Upsilon(1^-)$	9433	9460		
m_c (GeV)	1.826	$\eta_c(0^-)$	2984	2984		
m_b (GeV)	5.195	$J/\psi(1^-)$	3102	3097		
р	2/3	$B^{-}(0^{-})$	5281	5279		
κ	0.4222	$B^{*-}(1^{-})$	5336	5325		
κ'	1.7925	$B_{s}(0^{-})$	5348	5367		
λ (GeV ^{5/3})	0.3798	$B_{s}^{*}(1^{-})$	5410	5415		
Λ (GeV)	1.1313	$D^{-}(0^{-})$	1870	1870		
A (GeV ^{$B-1$})	1.5296	$D^{*-}(1^{-})$	2018	2010		
В	0.3263					

Stable $QQ'\overline{qq}'$

	$I(J^P)$	This work	[23] ←				→ [27]
bbą̄ą	0(1+)	-173	-189 ± 13	-143 ± 34	—	-186 ± 15	-128 ± 26
bcą̄ą	0(1+)	-40	-	-	13 ± 3	-	-
ccą̄ą	$0(1^{+})$	-23	-	-23 ± 11	-	-	-
$bsar{q}ar{q}$	$0(1^{+})$	-5	_	_	16 ± 2	-	_
$bbar{s}ar{q}$	$\frac{1}{2}(1^{+})$	-59	-98 ± 10	-87 ± 32	_	_	_

Structure

Compact Quasi-3-body

Resonant $bb\overline{qq}$

Technical issue = *scaling by* α

Resonant $bb\overline{qq}$

Technical issue = scaling by α

One 1^+ and three degenerate $0^-, 1^-, 2^-$ states

Resonant $bb\overline{qq}$

4. Summary

Partially answer to the questions:

- Do they exist?
- If they do, which ones?
- What is their internal structure?
- How best to look for them?

1. P_c 's as $\Sigma_c^{(*)} D^{(*)}$ molecules

Predicted spin-parity and other states $(\Sigma_c^* D^{(*)})$

- 2. Bound and resonant $QQ'\overline{qq}'$ states are predicted
- 3. Role of heavy quarks
 - $Q\overline{Q}$: Quasi-stable molecular states
 - QQ: Compact or molecular like stable states