Phi meson properties in nuclear matter

Philipp Gubler Japan Atomic Energy Agency (JAEA)

Talk at the "APCTP Focus Program in Nuclear Physics 2021 Part I: Hadron properties in a nuclear medium from the quark and gluon degrees of freedom", online July 15, 2021

Work done in collaboration with Elena Bratkovskaya (Frankfurt U./GSI) HyungJoo Kim (APCTP/Yonsei U.) Keisuke Ohtani (Tokyo Tech)

Many theoretical works about the ϕ meson at finite density in recent years

Spectral functions from hadronic models

P. Gubler and W. Weise, Phys. Lett. B **751**, 396 (2015).
P. Gubler and W. Weise, Nucl. Phys. A **954**, 125 (2016).
D. Cabrera *et al.*, Phys. Rev. C **95**, 015201 (2017).
D. Cabrera *et al.*, Phys. Rev. C **96**, 034618 (2017).

Possibility of φ-nucleus bound state

Mass shift in nuclear matter from QCD sum rules

P. Gubler and K. Ohtani,
Phys. Rev. D **90**, 094002 (2014).
HJ. Kim *et al.*, Phys. Lett. B **772**, 194 (2017).
HJ. Kim and P. Gubler,
Phys. Lett. B **805**, 135412 (2020).

J.J. Cobos-Martinez *et al.*, Phys. Lett. B **771**, 113 (2017). J.J. Cobos-Martinez *et al.*, Phys. Rev. C **96**, 035201 (2017).

To be measured again at the J-PARC E16 experiment with 100x increased statistics!

R. Muto et al. (E325 Collaboration), Phys. Rev. Lett. 98, 042501 (2007).

[GeV/c²]

[GeV/c²]

Recent experimental results

HADES: 1.7 GeV π^-A -reaction

- ★ Larger suppression of K⁻ in the Tungsten target compared to the Carbon target
- K⁻/φ ratio is similar for both Tungsten and Carbon targets

Observation of large suppression
 (broadening?) of the φ meson in large nuclei

K⁺K⁻ - invariant mass spectrum

J. Adamczewski-Musch et al. (HADES Collaboration), Phys. Rev. Lett. **123**, 022002 (2019).

New experimental results

S. Acharya et al. (ALICE Collaboration), arXiv:2105.05578 [nucl-ex].

New experimental results ALICE

Measurement of ϕN the correlation function

S. Acharya et al. (ALICE Collaboration), arXiv:2105.05578 [nucl-ex].

New experimental results ALICE

Fit of the correlation function data to two simple phenomenological potentials

$$V_{\text{Yukawa}}(r) = -\frac{A}{r}e^{-\alpha r}$$

$$A = 0.021 \pm 0.009 \text{ (stat.)} \pm 0.006 \text{ (syst.)}$$

$$\alpha = 65.9 \pm 38.0 \text{ (stat.)} \pm 17.5 \text{ (syst.)} \text{ MeV}$$

$$V_{\text{Gaussian}}(r) = -V_{\text{eff}}e^{-\mu r^{2}}$$

$$V_{\text{eff.}} = 2.5 \pm 0.9 \text{ (stat.)} \pm 1.4 \text{ (syst.)} \text{ MeV}$$

$$\mu = 0.14 \pm 0.06 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \text{ fm}^{-2}$$
S. Acharya et al. (ALICE Collaboration), arXiv:2105.05578 [nucl-ex].

Recent results from theory

Results for the ϕ meson mass at rest (from QCD sum rules)

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

What does lattice QCD say about σ_s ?

http://flag.unibe.ch/2019/

See also the most recent results of the BMW collaboration: Sz. Borsanyi et al., arXiv:2007.03319 [hep-lat].

Compare Theory with Experiment

Effect of momentum

vector meson at rest in nuclear matter

vector meson moving in nuclear matter

spin direction does not change physics (rotational symmetry)

spin direction changes physics
(broken rotational symmetry)

Results for the φ meson mass with non-zero momentum

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

Momentum-dependent mass and width

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

How compare theory with experiment?

Realistic simulation of pA reaction is needed!

Our tool: a transport approach PHSD (Parton Hadron String Dynamics)

E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).W. Cassing and E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

Most important feature for our purposes: Off-shell dynamics of vector mesons (dynamical modification of the vector meson spectral function during the simulated reaction)

off-shell terms

 $\begin{aligned} \frac{d\vec{X}_i}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_i} \bigg[2\vec{P}_i + \vec{\nabla}_{P_i} \operatorname{Re} \Sigma_{(i)}^{\text{ret}} + \frac{\varepsilon_i^2 - \vec{P}_i^2 - M_0^2 - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{P_i} \vec{\Gamma}_{(i)} \\ \frac{d\vec{P}_i}{dt} &= -\frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_i} \bigg[\vec{\nabla}_{X_i} \operatorname{Re} \Sigma_i^{\text{ret}} + \frac{\varepsilon_i^2 - \vec{P}_i^2 - M_0^2 - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{X_i} \tilde{\Gamma}_{(i)} \bigg], \\ \frac{d\varepsilon_i}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_i} \bigg[\frac{\partial \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\partial t} + \frac{\varepsilon_i^2 - \vec{P}_i^2 - M_0^2 - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \frac{\partial \tilde{\Gamma}_{(i)}}{\partial t} \bigg], \end{aligned}$

Testparticle approach:

Advantage: vector meson spectra can be chosen freely

Our choice: a Breit-Wigner with density dependent mass and width

$$A_{\phi}(M,\rho) = C \frac{2}{\pi} \frac{M^2 \Gamma_{\phi}^*(M,\rho)}{[M^2 - M_{\phi}^{*2}(\rho)]^2 + M^2 \Gamma_{\phi}^{*2}(M,\rho)} \quad \text{with} \quad \begin{cases} M_{\phi}^*(\rho) = M_{\phi}^{\text{vac}} \left(1 - \alpha^{\phi} \frac{\rho}{\rho_0}\right) \\ \Gamma_{\phi}^*(M,\rho) = \Gamma_{\phi}^{\text{vac}} + \alpha_{\text{coll}}^{\phi} \frac{\rho}{\rho_0} \\ \Gamma_{\phi}^*(M,\rho) = \Gamma_{\phi}^{\text{vac}} + \alpha_{\text{coll}}^{\phi} \frac{\rho}{\rho_0} \\ \Gamma_{\phi}^*(\rho_0) [\text{MeV}] \end{cases}$$
Simulated scenarios:
$$\begin{array}{c} 4.3 \quad 15.3 \quad 26.3 \quad 37.3 \quad 48.3 \quad 59.3 \quad 70.3 \quad 81.3 \quad 92.3 \\ \hline & \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \\ \Gamma_{\phi}^*(\rho_0) [\text{MeV}] \end{array}$$

What density does the φ feel in the reaction (p+Cu/C at 12 GeV)?

The dilepton spectrum in the ϕ meson region

Fits to experimental Copper target data (E325)

All Copper data combined

Fits to experimental Copper target data (E325)

Confidence levels of combined Copper data

Conclusion of the E325 Collaboration

X

Fits to experimental Carbon target data (E325)

Confidence levels of combined Carbon data

Conclusion of the E325 Collaboration

X

Summary and Conclusions

- ★ A lot of new experimental information about the φN interaction is becoming available (HADES, LHC, J-PARC)
- Studying the modification of the φ meson spectral function experimentally At finite density is non-trivial. A good understanding of the underlying reactions is needed!
- ★ Numerical simulations of the pA reactions to measured at the E325 experiment at KEK, using the PHSD transport code, are in progress.

Frist results indicate that the experimental data favor a **negative mass shift** with none or only small broadening!

Backup slides

The experimental situation The E325 Experiment (KEK)

Slowly moving ϕ mesons are produced in 12 GeV *p*+*A* reactions and are measured through di-leptons.

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

The importance of off-shell contributions

C+C, 2.0 A GeV, b=1 fm dropp. mass + coll. broad.

1.0 0.8 [.u.] MV/dM [a.u.] 0.8 0.6 0.6 0.4 p-meson p-meson off-shell on-shell 0.2 Off-shell Only on-shell contributions: contributions Vacuum spectral function time [fm/c] time [fm/c] M [GeV/c²] M[GeV/c²] included: are not recovered at late 40 0.0 40 0.0 correct behavior time of the reaction ω-meson ω-meson 1.0 0.8 0.6 0.4 off-shell on-shell 0.8 0.6 0.4 [a.u.] 0.2 0.2 0.2 0.4 0.6 0.8 M[GeV/c²] **^**1.0 time [fm/c] time [fm/c] 0.2 0.4 0.6 M [GeV/c²] 40 0.0 40 0.0

Taken from: E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).

What density does the ϕ feel in the reaction (p+Cu/C at 12 GeV)?

φ mesons on average
 decay at a density
 significantly below ρ₀

The dilepton spectrum

p+Cu at 12 GeV

The φ meson peak is clearly visible.

The dilepton spectrum in the ϕ meson region

Preliminary

The dilepton spectrum in the ϕ meson region

p + Cu at 12 GeV

With acceptance corrections!

With finite resolution effects!

Experimental di-lepton spectrum

A first look at a reaction to be probed at J-PARC: pA collisions with initial proton energy of 30 GeV

A first look at the reaction: Rapidity distribution of protons/mesons

Due to the large collision energy, the incoming proton passes through the target nucleus

Recent theoretical works about the $\boldsymbol{\varphi}$

based on hadronic models

P. Gubler and W. Weise, Phys. Lett. B **751**, 396 (2015).P. Gubler and W. Weise, Nucl. Phys. A **954**, 125 (2016).

Recent theoretical works about the $\boldsymbol{\varphi}$

based on hadronic models

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas,

Phys. Rev. C 96, 034618 (2017).

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C **95**, 015201 (2017).

Recent theoretical works about the $\boldsymbol{\varphi}$

J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Lett. B **771**, 113 (2017). J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Rev. C **96**, 035201 (2017).

based on the quark-meson coupling model

			$\Lambda_K = 2000$		$\Lambda_K = 3000$		$\Lambda_K = 4000$	
			E	$\Gamma/2$	E	$\Gamma/2$	E	$\Gamma/2$
	$^{4}_{\phi}$ He	1s	n (-0.8)	n	n (-1.4)	n	-1.0 (-3.2)	8.3
	$^{12}_{\phi}\mathrm{C}$	1s	-2.1 (-4.2)	10.6	-6.4 (-7.7)	11.1	-9.8 (-10.7)	11.2
	$^{16}_{\phi}O$	1s	-4.0 (-5.9)	12.3	-8.9 (-10.0)	12.5	-12.6 (-13.4)	12.4
		1p	n (n)	n	n (n)	n	n (-1.5)	n
	$^{40}_{\phi}$ Ca	1s	-9.7 (-11.1)	16.5	-15.9 (-16.7)	16.2	-20.5 (-21.2)	15.8
		1p	-1.0 (-3.5)	12.9	-6.3 (-7.8)	13.3	-10.4 (-11.4)	13.3
		1d	n (n)	n	n (n)	n	n (-1.4)	n
	$^{48}_{\phi}$ Ca	1s	-10.5 (-11.6)	16.5	-16.5 (-17.2)	16.0	-21.1 (-21.6)	15.6
		1p	-2.5(-4.6)	13.6	-7.9 (-9.2)	13.7	-12.0 (-12.9)	13.6
		1d	n (n)	n	n (-0.8)	n	-2.1 (-3.6)	11.1
	$^{90}_{\phi}$ Zr	1s	-12.9 (-13.6)	17.1	-19.0 (-19.5)	16.4	-23.6 (-24.0)	15.8
		1p	-7.1 (-8.4)	15.5	-12.8 (-13.6)	15.2	-17.2 (-17.8)	14.8
		1d	-0.2(-2.5)	13.4	-5.6 (-6.9)	13.5	-9.7 (-10.6)	13.4
		2s	n (-1.4)	n	-3.4 (-5.1)	12.6	-7.4 (-8.5)	12.7
	00.0	2p	n (n)	n	n (n)	n	n (-1.1)	n
	²⁰⁸ _φ Pb	1s	-15.0 (-15.5)	17.4	-21.1 (-21.4)	16.6	-25.8 (-26.0)	16.0
		1p	-11.4 (-12.1)	16.7	-17.4 (-17.8)	16.0	-21.9 (-22.2)	15.5
		1d	-6.9 (-8.1)	15.7	-12.7 (-13.4)	15.2	-17.1 (-17.6)	14.8
		28	-5.2 (-6.6)	15.1	-10.9 (-11.7)	14.8	-15.2 (-15.8)	14.5
		2p	n (-1.9)	n	-4.8 (-6.1)	13.5	-8.9 (-9.8)	13.4
		2d	n (n)	n	n (-0.7)	n	-2.2 (-3.7)	11.9
Some $\phi \Delta$ bound states might								
exist but they have a large width								
enst, but they have a large within								
\rightarrow difficult to observe								
experimentally?								

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

W. Cassing and E. Bratkovskaya, Phys. Rept. 308, 65 (1999).

W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Rept. 188, 363 (1990).

Basic Ingredient 1: Solve a Vlasov-Uehling-Uhlenbeck type equation for each particle type

$$\begin{pmatrix} \frac{\partial}{\partial t} + \frac{\mathbf{p}_{1}}{m} \cdot \frac{\partial}{\partial \mathbf{r}} - \frac{\partial}{\partial \mathbf{r}} U_{BHF}(\mathbf{r}; t) \cdot \frac{\partial}{\partial \mathbf{p}_{1}} \end{pmatrix} f(\mathbf{r}, \mathbf{p}_{1}; t) = \begin{pmatrix} \frac{\partial f}{\partial t} \end{pmatrix}_{coll}$$

mean field
(tuned to reproduce
nuclear matter properties)

Basic Ingredient 2: "Testparticle" approach

$$f_h(\boldsymbol{r}, \boldsymbol{p}; t) = \frac{1}{N_{\text{test}}} \sum_{i}^{N_h(t) \times N_{\text{test}}} \delta(\boldsymbol{r} - \boldsymbol{r}_i(t)) \ \delta(\boldsymbol{p} - \boldsymbol{p}_i(t))$$

Structure of QCD sum rules for the phi meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

In Vacuum

Dim. 0: $c_0(0) = 1 + \frac{\alpha_s}{\pi}$

Dim. 2:
$$c_2(0) = -6m_s^2$$

Dim. 4:
$$c_4(0) = \frac{\pi^2}{3} \langle \frac{\alpha_s}{\pi} G^2 \rangle + 8\pi^2 m_s \langle \overline{s}s \rangle$$

Dim. 6:
$$c_6(0) = -\frac{448}{81}\kappa\pi^3\alpha_s\langle\overline{s}s\rangle^2$$

Structure of QCD sum rules for the phi meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$
In Nuclear Matter
Dim. 0: $c_0(\rho) = c_0(0)$ $\langle \overline{ss} \rangle_{\rho} = \langle \overline{ss} \rangle_0 + \langle N | \overline{ss} | N \rangle \rho + \dots$
Dim. 2: $c_2(\rho) = c_2(0)$
Dim. 4: $c_4(\rho) = c_4(0) + \rho[-\frac{2}{27}M_N + \frac{56}{27}m_s\langle N | \overline{ss} | N \rangle + \frac{4}{27}m_q\langle N | \overline{q}q | N \rangle + A_2^s M_N - \frac{7}{12}\frac{\alpha_s}{\pi}A_2^g M_N]$
Dim. 6: $c_6(\rho) = c_6(0) + \rho[-\frac{896}{81}\kappa_N\pi^3\alpha_s\langle \overline{ss}\rangle\langle N | \overline{ss} | N \rangle - \frac{5}{6}A_4^s M_N^3]$

D

D

The strangeness content of the nucleon: $\sigma_{sN}=m_s \langle N|\overline{s}s|N\rangle$

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. 18, 205 (2002).

Other experimental results

There are some more experimental results on the ϕ -meson width in nuclear matter, based on the measurement of the transparency ratio T:

T. Ishikawa et al, Phys. Lett. B 608, 215 (2005).

A. Polyanskiy et al, Phys. Lett. B 695, 74 (2011).