Bound states, form factors and distribution amplitudes in flavor physics

APCTP Focus Program in Nuclear Physics 2021 Part I: Hadron properties in a nuclear medium from the quark and gluon degrees of freedom July 14-16, 2021 (VIRTUAL)

asia pacific center for theoretical physics

Antiproton annihilation on the deuteron PANDA @ Facility for Antiproton and Ion Research (FAIR)

Spatial imaging of glue in a nucleon/nucleus Jefferson Lab and Electron-Ion Collider

Exclusive photoproduction: hard-scattering mechanism $E_{\gamma} > 10 \text{ GeV}$ S.J. Brodsky, E. Chudakov, P. Hoyer, J.M. Laget, Phys. Lett. B (2001)

Fourier transform of *t*-dependence:

- Exclusive J/ψ production where the narrow quarkonium interacts by exchanging gluons with the nucleon's light quarks.
- Scattering amplitude allows for probing the energy-momentum tensor of the proton (nuclei) and can yield the spatial imaging of the glue density in proton.

Electroweak production of charmed mesons at EIC

FIG. 1: Feynman diagrams for the factorized amplitude for the $e^- + N \rightarrow \nu_e + D_s^- + N'$ process involving the gluon GPDs; the thick line represents the heavy anti-quark \bar{c} .

B. Pire, L. Szymanowski, and J. Wagner, arXiv:2104.04944 (2021)

HEAVY QUARK EFFECTIVE THEORY &

EFFECTIVE LAGRANGIANS

Heavy Quark Effective Theory

$$\begin{split} \mu &= m_Q v_\mu + k_\mu \\ k \sim \Lambda_{QCD}; \ v^2 = 1 \end{split}$$

$$\begin{split} \mu_v(x) &= e^{im_Q v_x} \frac{1 + \cancel{\forall}}{2} Q(x), \quad H_v(x) = e^{im_Q v_x} \frac{1 - \cancel{\forall}}{2} Q(x) \end{split}$$

$$\begin{split} \mu_v(x) &= e^{im_Q v_x} \frac{1 + \cancel{\forall}}{2} Q(x), \quad H_v(x) = e^{im_Q v_x} \frac{1 - \cancel{\forall}}{2} Q(x) \end{split}$$

$$\begin{split} \mathcal{L}_Q &= \overline{Q}(\not{D} - m_Q)Q = \underbrace{\overline{h}_v i v \cdot Dh_v}_{\text{massless mode}} + \underbrace{\overline{H}_v(-iv \cdot D - 2m_Q)H_v}_{\text{massive mode}} + \underbrace{\overline{h}_v i \overrightarrow{D} H_v + \overline{H}_v i \overrightarrow{D} h_v}_{\text{interaction terms}} \end{aligned}$$

$$\begin{split} H_v &= \frac{1}{iv \cdot D + 2m_Q} i \overrightarrow{D} h_v = \frac{1}{2m_Q} \sum_{n=0}^{\infty} \left(-\frac{iv \cdot D}{2m_Q} \right)^n i \overrightarrow{D} h_v \end{aligned}$$

$$\begin{split} \mathcal{L}_{\text{HQET}} &= \overline{h}_v iv \cdot Dh_v + \frac{1}{2m_Q} \left[\overline{h}_v (i \overrightarrow{D})^2 h_v + c(\zeta) \frac{g}{2} \overline{h}_v \sigma_{\mu\nu} g^{\mu\nu} h_v \right] + \dots \end{aligned}$$

$$\begin{split} S(p) &= i \frac{\cancel{p} + m_Q}{p^2 - m_Q^2} \xrightarrow{m_Q \to \infty} i \frac{1 + \cancel{p}}{2v \cdot k} + \mathcal{O}\left(\frac{k}{m_Q}\right) \end{split}$$

Heavy Quark Effective Theory

$$p_{\mu} = m_Q v_{\mu} + k_{\mu}$$

$$k \sim \Lambda_{QCD}; v^2 = 1$$
HQET Lagrangian:

$$Expansion in \alpha_s \text{ and } m_Q^{-1}!$$

$$\mathcal{L}_{HQET} = \mathcal{L}_0 + \frac{1}{m_Q} \mathcal{L}_1 + \frac{1}{m_Q^2} \mathcal{L}_2 + \dots$$

$$\mathcal{L}_0 \text{ has spin-flavor symmetry,}$$

$$1/m_Q \text{ terms are symmetry breaking corrections.}$$

$$\mathbf{f}_{(p)} = i \frac{p + m_Q}{p^2 - m_Q^2} \xrightarrow{m_Q - m_Q} i \frac{1 + p^2}{2 + \dots} + \mathcal{O}\left(\frac{k}{m_Q}\right) \wedge \text{preskud consertous:}$$

Heavy-Meson Chiral Perturbation Theory

R. Casalbuoni et al. , Phys. Rept. **281**, 145 (1997)

$$\mathcal{L}_{\text{heavy}} = -\text{tr}_a \text{Tr}[\bar{H}_a i v \cdot D_{ba} H_b] + \hat{g} \text{tr}_a \text{Tr}[\bar{H}_a H_b \gamma_\mu \mathbf{A}_{ba}^\mu \gamma_5]$$

$$D_{ba}^{\mu}H_{b} = \partial_{\mu}H_{a} - H_{b}\frac{1}{2}[\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger}]_{ba};$$

$$\mathbf{A}_{\mu}^{ab} = \frac{i}{2}[\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger}]_{ab};$$

$$H_{a}(v) = \frac{1+\psi}{2}[P_{\mu}^{*a}(v)\gamma_{\mu} - P^{a}(v)\gamma_{5}];$$

 Φ is matrix of N_f^2-1 pseudo-Goldstone boson.

- Dynamics is constrained by heavy quark symmetry.
- Blind to the heavy quark flavor and spin.
- Heavy pseudoscalar and vector mesons are mass degenerate.

 $\xi = \exp(i\Phi/f_{\pi}^0);$

 Can be improved upon — take into account light degrees of freedom, chiral symmetry breaking ⇒ HMChPT.

Strong $H^* \rightarrow H\pi$ to extract effective heavy quark coupling

Phenomenological Heavy-Meson Lagrangians

D-meson interactions with nucleons

Antiproton annihilation on the deuteron (PANDA @ FAIR)

Meson exchange — effective Lagrangians

SU(4) symmetry used

$$SU(4)$$
 symmetry: $g_{D\rho D} = g_{D\omega D} = g_{KK\rho} = \frac{1}{2}g_{\pi\pi\rho}$

CALCULATION OF THE EFFECTIVE THEORY COUPLINGS

Caveat

- No assumption of heavy-quark symmetry is made.
- In particular, pseudoscalar and vector meson masses are not degenerate.
- We solve the gap equations (Dyson-Schwinger equations) for light and heavy quarks ⇒ dressed quark propagators with running mass M(p).
- Solving the Bethe-Salpeter equation for flavored pseudoscalar and vector mesons and quarkonia, we obtain their wave functions in an improved ladder truncation.
- Although impulse approximation and truncations are employed, $\Lambda_{\rm QCD}/m_c$ contributions are systematically included.

Bethe-Salpeter Equations for QCD Bound States

Rainbow-ladder truncation (leading symmetry-preserving approximation)

Bethe-Salpeter Equations for QCD Bound States

$$\left[\Gamma_{M}^{f\bar{g}}(k;P)\right]_{AB} = \int \frac{d^{4}q}{(2\pi)^{4}} \left[K^{f\bar{g}}(k,q;P)\right]_{AC,DB} \left[S_{f}(q_{+})\Gamma_{M}^{f\bar{g}}(q;P)S_{\bar{g}}(q_{-})\right]_{CD}$$

Meson Spectrum

m_M	$m_M^{ m exp.}$	ϵ^m_r [%]	f_M	$f_M^{ m exp./IQCD}$	$\epsilon_r^f~[\%]$
0.136	0.140	2.90	$0.094\substack{+0.001 \\ -0.001}$	0.092(1)	2.17
0.494	0.494	0.0	$0.110\substack{+0.001\\-0.001}$	0.110(2)	0.0
$1.867\substack{+0.008\\-0.004}$	1.870	0.11	$0.144\substack{+0.001\\-0.001}$	0.150(0.5)	4.00
$2.015\substack{+0.021 \\ -0.018}$	1.968	2.39	$0.179\substack{+0.004 \\ -0.003}$	0.177(0.4)	1.13
$3.012\substack{+0.003\\-0.039}$	2.984	0.94	$0.270\substack{+0.002\\-0.005}$	0.279(17)	3.23
$9.392^{+0.005}_{-0.004}$	9.398	0.06	$0.491\substack{+0.009\\-0.009}$	0.472(4)	4.03
-	${m_M} \ 0.136 \ 0.494 \ 1.867^{+0.008}_{-0.004} \ 2.015^{+0.021}_{-0.018} \ 3.012^{+0.003}_{-0.039} \ 9.392^{+0.005}_{-0.004}$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Mesons/Observables	m_M	$m_M^{ m exp.}$	$\epsilon^m_r ~[\%]$	f_M	$f_M^{ m lQCD}$	ϵ_r^f [%]
$B_u(bar{u})$	$5.277\substack{+0.008\\-0.005}$	5.279	0.04	$0.132\substack{+0.004\\-0.002}$	0.134(1)	4.35
$B_s(bar{s})$	$5.383\substack{+0.037\\-0.039}$	5.367	0.30	$0.128\substack{+0.002\\-0.003}$	0.162(1)	20.50
$B_c(bar c)$	$6.282\substack{+0.020\\-0.024}$	6.274	0.13	$0.280\substack{+0.005\\-0.002}$	0.302(2)	7.28
$\eta_b(bar b)$	$9.383\substack{+0.005\\-0.004}$	9.398	0.16	$0.520\substack{+0.009\\-0.009}$	0.472(4)	10.17
	-	-				

Strong decays: $D^* \rightarrow D\pi$

Strong decays: $D^* \rightarrow D\pi$

$$A(D^* \to D\pi) = \epsilon_{\mu}^{\lambda_{D^*}}(p_{D^*})M^{\mu}(p_D^2, p_D^2, p_D^2, M^{\mu}(p_D^2, p_{D^*}^2)) = N_c \operatorname{tr} \int^{\Lambda} \frac{d^4k}{(2\pi)^4} \bar{\Gamma}_D(k; \cdot)$$

CLEO
 DSE
 QCDSR
 Lattice

$$g_{D^*D\pi}$$
 $17.9 \pm 0.3 \pm 1.9$
 16.5 ± 2
 14.0 ± 1.5
 20 ± 2

 B. E., M.A. Ivanov and C.D. Roberts (2012)

Similarly: $D_s^* \to DK$

$$g_{D_s^*DK} = 20^{+2.5}_{-1.7}$$

B. E., M.A. Ivanov and C.D. Roberts (2012)

 $Q_{\pi})$

Strong decays: $B^* \rightarrow B\pi$ (analogy)

This amplitude can be used for $m_{\pi}^2 \to 0$ to extract \hat{g} at leading order in HMChPT:

 $\implies \hat{g} = \frac{g_{B^*B\pi}}{2\sqrt{m_B m_{B^*}}} f_\pi$

 DSE model
 Lattice in static limit $(n_f = 2)$
 \hat{g} 0.37 ± 0.04 $0.44 \pm 0.03^{+0.07}_{-0.0}$

DSE-BSE: B. E., M.A. Ivanov and C.D. Roberts (2011) LQCD: D. Bećirević, B. Blossier, E. Chang and B. Haas (2009)

 $\mathcal{L}_{\text{heavy}} = -\text{tr}_a \text{Tr}[\bar{H}_a i v \cdot D_{ba} H_b] + \hat{g} \text{tr}_a \text{Tr}[\bar{H}_a H_b \gamma_\mu \mathbf{A}_{ba}^\mu \gamma_5]$

The value obtained from D^* decay is: $\hat{g}_c = 0.56^{+0.07}_{-0.03} \longrightarrow \Lambda_{\rm QCD}/m_c$ corrections are important!

Flavor SU(3), SU(4), sensible symmetries?

$$g_{D\rho D} \neq g_{K\rho K} \neq \frac{1}{2} g_{\pi\rho\pi}$$

A single universal coupling of the D to the ρ mesons?

B.E., M.A. Paracha, E. Rojas, C.D. Roberts, PRD 95 (2017)

Lattice QCD: $g_{D^*\rho D^*} = 5.94(56)$ K.U. Can, G. Erkol, M. Oka, T. Takahashi (2013) DSE-BSE: $g_{D^*\rho D^*}^1(0) = 10.5$

Consequences for DN cross sections?

The integrated $D\rho D$ interaction is enhanced by about 40% compared with an SU(4) prediction for the coupling/form factor.

Large value value for the interaction strength entails an enhanced cross section in DN scattering (I = 1 cross section inflated by a factor 4–5).

Possible novel charmed resonances or bound states in nuclei?

Light-Front Distribution Amplitudes

QCD factorization involves matrix elements which are convolution integrals:

$$\langle \pi^+\pi^-|(\bar{u}b)_{\mathrm{V-A}}(\bar{d}u)_{\mathrm{V-A}}|\bar{B}_d\rangle \to \int_0^1 d\xi du dv \,\Phi_B(\xi) \,\Phi_\pi(u) \,\Phi_\pi(v) \,T(\xi,u,v;m_b).$$

The integrals are over a (hard) scattering kernel $T(\xi, u, v, m)$ and light-cone distribution amplitudes (LCDA) expanded in Gegenbauer polynomials:

$$\begin{split} \varphi_{\pi}(x;\tau) &= \varphi_{\pi}^{\text{asy}}(x) \bigg[1 + \sum_{j=2,4,\dots}^{\infty} a_j^{3/2}(\tau) \, C_j^{(3/2)}(2x-1) \bigg] \\ \varphi_{\pi}^{\text{asy}}(x) &= 6x(1-x) \end{split}$$

- LCDA until recently poorly known for light mesons, in recent years improved determinations of the first two Gegenbauer moments of the pion and kaon, RQCD Collaboration, Bali et al. (2019).
- Next to nothing was known about heavy-light mesons, mostly models and asymptotic LCDA used.
- Recent results using DSE-BSE calculations projected on light front: Serna et al. (2020).

Light-Front Distribution Amplitudes

F. Serna, R. Correa da Silveira, J.J. Cobos Martínez, B.E., E. Rojas, Eur. Phys. J. C 80 (2020)

Light-Front Distribution Amplitudes

Only valid for full QCD !

Application to HQET requires the use of heavy-quark expansion of charm and bottom propagator in the Bethe-Salpeter equation.

Conclusions & Progress

- * Over the years, much progress was made from QCD based modeling toward nonperturbative numerical solutions of quark propagators and quark-antiquark bound states for flavored mesons satisfying *chiral symmetry* and *Poincaré covariance*.
- * Good reproduction of charmonium and bottonium as well as *D* and *B* meson mass spectrum and their weak decay constants.
- ★ Improvements in Bethe-Salpeter kernels beyond ladder truncation underway ...
 ⇒ needed for scalar and axialvector channels and their higher radially excited states, as well as better control of quark correlation functions on complex plane.
- * The calculation of light-front distribution amplitudes for vector quarkonia and heavy-light mesons is currently being concluded.
- * Couplings between heavy and light mesons employed in effective field theories were obtained in impulse approximation with simple BSA models. Improvements with full BSA for *D* and *D** and beyond leading approximation underway.