Nuclear Equation of State and Neutron Stars

Yeunhwan Lim

Department of Science Education Ewha Womans University

JUL 14, 2021

APCTP Focus Program in Nuclear Physics 2021

Yeunhwan Lim (EWHA)

JUL 14, 2021 1 / 32

Image: A math a math

- Formed after core collapsing supernovae.
- Suggested by Walter Baade and Fritz Zwicky (1934) Only a year after the discovery of the neutron by James Chadwick
- Jocelyn Bell Burnell and Antony Hewish observed pulsar in 1965.
- $\bullet\,$ Neutron star is cold after 30s \sim 60s of its birth
 - inner core, outer core, inner crust, outer crust, envelope
 - R : \sim 10km
 - M : 1.2 ~ 2.x M_{\odot} (2.14^{+0.1}_{-0.09}(2.08^{+0.07}_{-0.07}) M_{\odot} PSR J0704+6620; 2.01 ± 0.04 M_{\odot} PSR J0348+0432 ; 1.97 ± 0.04 M_{\odot} PSR J614-2230)
 - 2×10^{11} earth $g \rightarrow$ General relativity
 - B field : $10^8 \sim 10^{12} G.$
 - Central density : $3 \sim 10 \rho_0 \rightarrow \text{Nuclear physics}!!$

イロト イ団ト イヨト イヨト

• Inner structure of neutron stars

- Neutron Stars:
 - Dense nuclear matter physics

イロト イヨト イヨト イヨト

• TOV equations for macroscopic structure

$$\frac{dp}{dr} = -\frac{G(M(r) + 4\pi r^3 p/c^2)(\epsilon + p)}{r(r - 2GM(r)/c^2)c^2},$$

$$\frac{dM}{dr} = 4\pi \frac{\epsilon}{c^2} r^2,$$
(1)

• Nuclear physics provide the information for ϵ and p.

イロト イヨト イヨト イヨ

Nuclear matter properties

• Nuclear equation of state at T = 0 MeV

Figure: Energy per baryon for symmetric nuclear matter and pure neutron matter

• • • • • • • • • • • • •

Hartree-Fock:

Second Order:

Figure: Many body diagrams for nuclear matter calculation (C. Drischler, Phd thesis)

イロト イヨト イヨト イヨト

• Most neutron matter results can be fitted using the quadratic expansion.

$$\mathcal{E}(n,x) = \frac{1}{2m}\tau_n + \frac{1}{2m}\tau_p + (1-2x)^2 f_n(n) + \left[1 - (1-2x)^2\right] f_s(n), \quad (2)$$

$$f_{s}(n) = \sum_{i=0}^{3} a_{i} n^{(2+i/3)}, \quad f_{n}(n) = \sum_{i=0}^{3} b_{i} n^{(2+i/3)}$$
(3)

イロト イヨト イヨト イヨ

Neutron Star EOS constraints

- Experiments
 - SNM properties, Neutron skin thickness, binding energies
- Theory
 - Neutron matter calculations (QMC, MBPT, ..)
- Observation

Gravitation wave : tidal deformabilities, Moment of inertia, Nicer (mass-radius), maximum mass($M_{\rm max} > 2.0 M_{\odot}$)

Yeunhwan Lim (EWHA)

- Nuclear EOS constraints
 - Microscopic calculation(Pure neutron matter)
 - Nuclear structure: Neutron skin, binding energies of nuclei
 - Maximum mass of neutron stars($M_{
 m max} > 2.0 M_{\odot})$
 - Gravitational wave: tidal deformabilities($\Lambda_{1.4}$)
 - (Moment of inertia)
 - NICER(Neutron Star Interior Composition Explorer): mass and radius

< □ > < 同 > < 回 > < Ξ > < Ξ

• Statistical uncertainties from EOSs (Theory + Experiment)

Y. Lim & J.W. Holt, PRL 2018.

イロト イヨト イヨト イ

Tidal deformability from EOSs

•
$$\Lambda_{1.4} = 350^{+169}_{-114}$$
(EOSs) vs $\Lambda_{1.4} = 190^{+380}_{-120}$ (LIGO).

Y. Lim & J.W. Holt, PRL 2018.

・ロト ・日下・ ・ ヨト・

Probability distribution of central density I

Figure: Lim & Holt, Eur. Phys. J. A 55, 209 (2019)

イロト イヨト イヨト イヨ

Probability distribution of central density II

Figure: Lim & Holt, Eur. Phys. J. A 55, 209 (2019)

イロト イヨト イヨト イヨ

Figure: Lim & Holt, EPJA 2019

< □ > < □ > < □ > < □ > < □ >

Figure: Mass radius confidence intervals, NICER, PNM, SNM, GW170817, GW190425, arXiv:2007.06526

JUL 14, 2021 15 / 32

イロト イヨト イヨト イヨト

• Mass radius of neutron stars using various constraints (Y.Lim and A. Schwenk *in preparation*)

Figure: Mass radius confidence intervals, NICER(J003+0451), PNM, SNM, GW170817, $M_{\rm max} > 2.01$, NICER2(J0704+6620)

What is it and why is it important?

- Nuclear EOS is thermodynamic relation for given ρ , Y_e , T with wide range of variables. (1 MeV $\simeq 10^{10}$ K)

 $(
ho = 10^4 \sim 10^{14} {
m g/cm^3}, \; Y_e = 0.01 \sim 0.65, \; T = 0.1 \sim 200 {
m MeV})$

- core collapsing supernova explosion, proto-neutron stars, and compact binary mergers involve neutron stars.

• • • • • • • • • • • • •

How can we construct EOS table ?

We need nuclear force model and numerical method.

Nuclear force model	Numerical technique
Skyrme Force model	Liquid Drop(let) approach (LDM)
(non-relativistic potential model)	
Relativistic Mean Field model (RMF)	Thomas Fermi Approximatoin (TF)
Finite-Range Force model	Hartree-Fock Approximation (HF)
	Nuclear Statistical Equilibrium (NSE)

- LS EOS \Rightarrow Skyrme force + LDM (without neutron skin)
- STOS \Rightarrow RMF + Semi TF (parameterized density profile)
- SHT \Rightarrow RMF + HARTREE
- HSB \Rightarrow RMF + NSE

Nuclear force model should be picked up to represent both finite nuclei and neutron star observation + Neutron matter calculation.

• LS EOS (Lattimer Swesty 1991) Use Skyrme type potential with Liquid droplet approach

- Consider phase transition, several K
- STOS EOS (H. Shen, Toki, Oyamastu, Sumiyoshi 1998), new version (2011) Use RMF with TF approximation and parameterized density profile (PDP)
 - Old : awkward grid spacing
 - New : finer grid spacing, adds $\mathsf{Hyperon}(\Lambda,\Sigma^{+,-,0})$
- SHT EOS (G. Shen, Horowitz, Teige 2010) Use RMF with Hartree approximation
- HSB (M. Hempel and J. Schaffner-Bielich). 2010, 2012
 - Use Relativistic mean field model (TM1, TMA, FSUgold)
 - Nuclear statistical equilibrium (alpha, deutron, triton, helion)

イロト イ団ト イヨト イヨト

Domains for a supernova simulation

Figure from Oertel et al., Rev. Mod. Phys. 89, 015007.

Image: A matching of the second se

Items in EOS tables

- 1 Total pressure P
- 3 Total entropy per baryon s
- 5 Neutron chemical potential
- 7 Neutron mass fraction (external to nuclei)
- 9 Alpha particle mass fraction
- 11 Baryon free energy per baryon
- 13 Baryon internal energy per baryon
- 15 Baryon density inside heavy nucleus
- 17 dP/dT
- 19 ds/dT
- 21 Mass number of heavy nucleus
- 23 Number of neutrons in neutron skin of heavy nucleus
- 24 Baryon density of nucleons external to heavy nucleus and alpha particles
- 25 Proton fraction of nucleons external
- to heavy nucleus and alpha particles 26 Out of whackness:

 $\mu_{\it n}-\mu_{\it P}-\mu_{\it e}{+}1.293~{
m MeV}$

- 2 Total free energy per baryon f
- 4 Total internal energy per baryon e
- 6 Proton chemical potential
- 8 Proton mass fraction
- 10 Baryon pressure
- 12 Baryon entropy per baryon
- 14 Nuclei filling factor u
- 16 dP/dn
- 18 dP/dYe
- 20 ds/dYe
- 22 Proton fraction of heavy nucleus

イロト イ団ト イヨト イヨト

• Schematic picture of inhomogeneous nuclear matter(neutron star crust)

- Liquid Drop Model(Fast and accurate)
- Most difficult part: inhomogeneous matter, low temperature
- Adopt state-of-the-art neutron matter results
 -ex) MBPT(Drischler *et al.*, PRL 2019), QMC(Tews *et al.*, PRC 2016)

A B A B A B A

• New energy density functional for the nuclear EOS. (Y. Lim, S. Huth, and A. Schwenk *in preparation*)

イロト イヨト イヨト イ

Free energy

Total free energy density consists of

$$F = F_N + F_o + F_\alpha + F_d + F_t + F_h + F_e + F_\gamma$$
(4)

where F_N , F_o , F_α , F_e , and F_γ are the free energy density of heavy nuclei, nucleons out the nuclei, alpha particles, electrons, and photons.

•
$$F_N = F_{bulk,i} + F_{coul} + F_{surf} + F_{trans}$$

•
$$F_o = F_{bulk,o}$$

- α, d, t, h particles : Non-interacting Boltzman gas
- e, γ : treat separately

For $F_{bulk,i}$, $F_{bulk,o}$, and F_{surf} , we use the same force model. F_{surf} from the semi infinite nuclear matter calculation

The is the modification of LPRL (1985), LS (1991, No skin)

- Consistent calculation of surface tension
- Deuteron, triton, helion
- The most recent parameter set

イロト イヨト イヨト イヨト

For fixed independent variables (ρ , Y_p , T), we have the 11 dependent variables (ρ_i , x_i , r_N , z_i , u, ρ_o , x_o , ρ_α , ρ_d , ρ_t , ρ_h).

where *i* heavy nuclei, *o* nucleons outside, *x* proton fraction, *u* filling factor, and ν_n neutron skin density.

From baryon and charge conservation, we can eliminate x_o and ρ_o .

Free energy minimization, $\frac{\partial F}{\partial \rho_i} = \frac{\partial F}{\partial x_i} = \frac{\partial F}{\partial r_N} = \frac{\partial F}{\partial z_i} = \frac{\partial F}{\partial u} = \frac{\partial F}{\partial \rho_{\alpha}} = \frac{\partial F}{\partial \rho_d} = \frac{\partial F}{\partial \rho_t} = \frac{\partial F}{\partial \rho_h} = 0.$ • Finally, we have 6 equations to solve and 6 unknowns. $z = (\rho_i, \ln(\rho_{no}), \ln(\rho_{po}), x_i, \ln(u), z_i).$

< □ > < □ > < □ > < □ > < □ >

Results : Relative pressure difference bewteen the current code & LS ${\rm SkM^*}$

Yeunhwan Lim (EWHA)

Nuclear Equation of State and Neutron Stars

JUL 14, 2021 26 / 32

Phase Boundary

▲ ■ ▶ ■ シ۹ (~ JUL 14, 2021 27/32

イロト イヨト イヨト イヨト

Figure: Phase boundaries using Model C from EOS table (Left) and representative EOSs (Right)

・ロト ・日 ・ ・ ヨト ・

Simulation

Fig.1 Case with heating factor

Fig.2 Case with no heating factor

< □ > < □ > < □ > < □ > < □ >

Particle fraction

Yeunhwan Lim (EWHA)

Neutron star and Nuclear equation of state

- Nuclear Model : Energy density functional (Exp. + Theory + Obs.)
 - should be consistent with finite nuclei,
 - neutron matter calculation
 - maximum mass of neutron stars, gravitational wave, MR(NICER), (moment of inertia in the future)
- Numerical Method: Liquid Drop Model
 - fast and accurate

- surface tension, critical temperature, effective charge (Screening from outside particles)

- deuteron, triton, helion

イロト イ団ト イヨト イヨト

Thank you for your attention !

メロト メロト メヨトメ