Neutron Star Properties from Astrophysical Observations

Chang-Hwan Lee / Pusan National University

in collaboration with Myungkuk Kim, Young-Min Kim, Kyujin Kwak (UNIST)

APCTP-Focus@2021.07.14

focused on Astronomy & Astrophysics 650, A139 (2021)

Contents

- Introduction & Motivation
- Mass & Radius of NS from Low-Mass X-ray binary (LMXB)
 - Monte Carlo sampling
 - Bayesian analysis •
- Discussion

Astro-Hadron Physics in Korea my personal point of view

Hadron Physics

NS EoS with **Effective Field Theories** (with D.P.Min, **M.Rho** & G.E.Brown)

> **Science-Business-Belt Project** initiated by **D.P. Min**

RAON project was approved

New Transport DJBUU

Nuclear Structure DRHBc New EDF KIDS

....

Astro-Hadron Physics

Dense Nuclear & Stellar Matter Studies

for **RAON** New Rare Isotope Accelerator & **MMA** Multi-Messenger Astrophysics

BUD² Collaboration

Busan (CHL, H.S. CHO,) Ulsan (K. KWAK, Y.-M. KIM, M. KIM,) Daegu (Chang Ho HYUN) Daejeon (Youngman KIM,) Montreal (Sangyong JEON, McGill)

Low-mass X-ray binary (NS binary)

Constraints on Equation of State

Masses in the Stellar Graveyard in Solar Masses

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

THE ASTROPHYSICAL JOURNAL LETTERS, 896:L44 (20pp), 2020 June 20 © 2020. The American Astronomical Society. **OPEN ACCESS**

https://doi.org/10.3847/2041-8213/ab960f

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

mass gap $(2.5 M_{\odot} < M < 5 M_{\odot})$

Probability of NS formation from core collapse SN is low What is the origin of 2.6 solar mass compact object ?

Black Hole or **Neutron Star** or **Quark Star**? $2.6 M_{\odot}$

Light Black Hole

- e.g., Yang et al., ApJL 901, L34 (2020)
- Tidal Love number of GW170817 prefers **soft EOS** •
- 2.6 solar mass NS required hard EOS (inconsistent with GW170817)
- Light BH may be formed **by accretion** (not from direct collapse of giant stars) •
- **Strange Quark Star**
 - e.g., Bombaci et al., PRL 126, 162702 (2021) Drago & Pagliara, PRD 102, 063003 (2020)
 - Two track scenario

... ...

NS and QS may coexist

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW D **81**, 105021 (2010)

Cold quark matter

COLD QUARK MATTER

FIG. 10 (color online). The mass-radius relation for compact stars, obtained using $\Delta = 0$ (left) and $\Delta = 100$ MeV (right) in the quark matter EOS. We display the results for purely hadronic stars (containing only nucleons [69], nucleons with kaon condensation [70], or nucleons and hyperons [71]), pure quark matter stars (strange stars, cf. Sec. VA) and hybrid stars including both hadronic and quark matter (see text for details). Also shown in the plots are compact star mass observations from Refs. [81–85].

Open questions

PHYSICAL REVIEW D 102, 063003 (2020)

Why can hadronic stars convert into strange quark stars with larger radii

Alessandro Drago[®] and Giuseppe Pagliara

Observations of both M & R of NS are important !!

Low-Mass X-ray binary (LMXB)

Mass & Radius of Neutron Star

- Monte Carlo sampling
- Bayesian analysis

Low-Mass X-ray binary (low-mass companion)

Table 9

Most Probable Values for Masses and Radii for Neutron Stars Constrained to Lie on One Mass Versus Radius Curve

Object	$M(M_{\odot})$	<i>R</i> (km)	$M(M_{\odot})$	<i>R</i> (km
	$r_{\rm ph} = R$		$r_{\rm ph}$)	$\gg R$
4U 1608–522	$1.52^{+0.22}_{-0.18}$	$11.04^{+0.53}_{-1.50}$	$1.64^{+0.34}_{-0.41}$	11.82^{+0}_{-0}
EXO 1745–248	$1.55^{+0.12}_{-0.36}$	$10.91\substack{+0.86 \\ -0.65}$	$1.34_{-0.28}^{+0.450}$	11.82^{+0}_{-0}
4U 1820–30	$1.57^{+0.13}_{-0.15}$	$10.91\substack{+0.39 \\ -0.92}$	$1.57^{+0.37}_{-0.31}$	11.82^{+0}_{-0}
M13	$1.48^{+0.21}_{-0.64}$	$11.04^{+1.00}_{-1.28}$	$0.901\substack{+0.28\\-0.12}$	12.21^{+0}_{-0}
ω Cen	$1.43^{+0.26}_{-0.61}$	$11.18^{+1.14}_{-1.27}$	$0.994^{+0.51}_{-0.21}$	12.09^{+0}_{-0}
X7	$0.832^{+1.19}_{-0.051}$	$13.25^{+1.37}_{-3.50}$	$1.98^{+0.10}_{-0.36}$	$11.3^{+0.1}_{-1.1}$

Steiner, Lattimer, Brown, ApJ 2010

95% confidence limits by using MC sampling (for fixed NS mass)

In this talk, we will focus on

Low-Mass X-ray Binaries (LMXB) with Photospheric Radius Expansion (PRE) Simultaneous measurement of neutron star Mass & Radius

A&A 650, A139 (2021) https://doi.org/10.1051/0004-6361/202038126 © ESO 2021

Measuring the masses and radii of neutron stars in low-mass X-ray binaries: Effects of the atmospheric composition and touchdown radius

Myungkuk Kim¹, Young-Min Kim¹, Kwang Hyun Sung¹, Chang-Hwan Lee², and Kyujin Kwak¹

¹ Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea e-mail: myungkkim@unist.ac.kr; ymkim715@unist.ac.kr; kkwak@unist.ac.kr ² Department of Physics, Pusan National University, Busan 46241, Korea

Received 9 April 2020 / Accepted 26 March 2021

Astronomy **A**strophysics

Photospheric Radius Expansion (PRE) XRB

Observations (F_D, T; distance)

M, R

Equations of state

LMXBs considered in our work

Table 1. Observational properties of six LMXBs that show PRE XRBs.

Source	App. angular area (km/10 kpc) ²	Touchdown flux $(10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1})$	Spin freq. ^(a) (Hz)	Distance ^(a) (kpc)
4U 1820–30	89.9 ± 15.9	5.98 ± 0.66	• • •	$7.6 \pm 0.4 (4)$ 8 4 ± 0.6 (5.6)
SAX J1748.9–2021	89.7 ± 9.6	4.03 ± 0.54	410 (1)	$8.4 \pm 0.0 (3-0)$ $8.2 \pm 0.6 (4, 5, 7)$
EXO 1745–248	117.8 ± 19.9	6.69 ± 0.74	504 (0)	$6.3 \pm 0.63^{(b)} (8-9)$
4U 1724–207	96.0 ± 7.9 113.8 ± 15.4	4.71 ± 0.52 5.29 ± 0.58	524 (2)	$7-9^{(6)}(10)$ 7.4 ± 0.5
4U 1608–52	314 ± 44.3	18.5 ± 2.0	620 (3)	$4.0 \pm 2.0, D_{\rm cutoff} > 3.9$ ^(d)

Our strategy

Observations

Steiner et al., ApJ 722, 33 (2010)

Method 1 Monte Carlo sampling

(M. Kim)

(*F_D*,*T*; distance)

Ozel et al., ApJ 820, 28 (2016)

Method 2

Bayesian analysis (NS EOS is used) (Y.-M. Kim)

M, R

Method 1: Monte Carlo sampling (by M. Kim)

Basic observations : flux, spectrum (blackbody temperature)

before corrections

Touch down flux $F_{\mathrm{TD},\infty} =$

 $A \equiv$ Apparent angular area

> $\kappa = 0.2(1$ **Opacity**

$$\frac{GMc}{\kappa D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{1/2}$$
$$\frac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} \frac{R^2}{D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{-1}$$

$$+X) \ {\rm cm}^2 \ {\rm g}^{-1}$$

X: hydrogen mass fraction in H-He plasma

Systematic treatments

Color-correction factor

- Change of the effective area due to the atmospheric effect
- Cooling tail method
 - Spectral evolution during the cooling phase due to the atmosphere of NS • (surface gravity & chemical composition)

Chemical composition of the photosphere

• H-He plasma

- $\kappa = 0.2(1 + X) \text{ cm}^2 \text{ g}^{-1}$
- X: hydrogen mass fraction in H-He plasma

touchdown radius parameter

Modifications

Touchdown Flux (ratio)

causality limit

NS spin frequency

 $f_{\rm NS}$

Apparent angular area (ratio)

Double solutions are allowed in MC sampling

·		

SAX J1748.9-2021

X: hydrogen mass fraction

4U 1820-30

X: hydrogen mass fraction

Most probable values of M & R

Most probable M,R

Abbott et al. (LSC and Virgo), PRL 121.161101

Consistent

M. Kim, Y.-M. Kim et al. (A&A 2021)

Method 2: Bayesian analysis (by Y.-M. Kim)

- Posterior probability distribution
- Parameter set
- Likelihood
- Prior of the parameter set of the model $P(\theta) = P(R)P(M)P(D)P(f_{\rm NS})P(f_{\rm c})P(X)P(h)$
- (flat distribution for unknown quantities without using EOS)

Mass-Radius estimation by Bayesian.

 $2R_{\rm NS}$ h = $r_{\rm ph}$

Discussions on LMXBs

- LMXBs are good laboratories for NS physics
 - Photosphere is likely to be H-poor regardless of the energy generation mechanism below.
 - Touchdown is likely to occur away from the neutron star surface.
 - Upper bound of NS radius is consistent that by LIGO/Virgo (based on tidal deformability of GW170817).
- Future observations of LMXBs will be able to give more constraints on NS masses & radii, and check the possibilities of Quark Stars.
- Effects of accretion disk in LMXBs are in progress.

Thanks

Binary interactions are always interesting

> Ssireum (Korean Wrestling) Hong-Do Kim (1745 ~ ?)

