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A Fascinating Program

QCD: g-g-g vertices from lattice; 2-flavor dense matter
EMC effect

Baryon form factors

Meson structure versus quark mass and in-medium

Mesic atoms; exotic states (tetra-quarks and penta-quarks)
Holographic QCD

Neutron stars: strangeness; dark matter; quarkyonic matter...
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Distribution Amplitudes for Pseudoscalar Mesons

« Study of Serna et al., using Bethe-Salpeter ladder
approximation with flavor dependent dressing functions

Eur. Phys. J. C (2020) 80:955 Page 13 of 18 955
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Fig. 5 Distribution amplitudes on the light front at a renormalization distribution amplitudes with ¢p, (x. 1), ¢p, (x, p) and ¢y (x, ). The
point i = 2 GeV. Left panel: ¢y (x, (1), ¢k (x, ) and gagy(x) = 6xX error bands correspond to uncertainties of @ + Aw in the interaction
is the asymptotic LCDA. Right panel: Comparison of the light-meson model
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= Hypernuclei

First observation of a nuclear s-state of
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Vital importance for neutron star EoS

SITY

arXiv:2103.08793, Yoshimoto ef al.
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Wang: Study of the EMC effect in the deuteron
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Microscopic model of Melnitchouk et al.,
shows little of valence EMC effectin D
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Baryon form factors in-medium

Octet baryon electromagnetic form factor double ratios

(G;/Gyy)/ (Ge/Gyy) in a nuclear medium

G. Ramalho. J.P.B.C.

de Melo. and K. Tsushima

OCTET BARYON ELECTROMAGNETIC FORM FACTOR DOUBLE ...

PHYS. REV. D 100, 014030 (2019)
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My focus: Hadron Structure Free and In-Medium??

.  Why even ask this question?
— Should not: “standard model of nuclear physics” and EFT

— Should: EMC effect; Coulomb sum-rule; chiral restoration;
percolation; transition to quark matter at high density;
very large scalar and vector mean-fields in nuclei

2. Relevance to JLab at 12GeV, J-PARC, FAIR and the EIC(s)
and
Neutron Stars

~ APCTP Focus Program in
 Nuclear Physics 2021: Part |
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QCD

 Discovered: early 1970s
« Constituent quark and bag models: mid-70s
* Plus chiral symmetry: cloudy bag model late 70s and early-80s

* Quarks in individual nucleons occupy a large fraction of the
volume of a nucleus — possible percolation; multi-quark
fluctuations...

 Then two major experimental surprises strongly suggested
a change in structure for bound nucleons
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The European Muon Collaboration (EMC) Effect
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The EMC Effect: Nuclear PDFs

*  Observation stunned and electrified the
HEP and Nuclear communities 38 years ago

 Whatis it that alters the quark momentum in the nucleus?

: e SLAC E139 (Fe)
1.2 | x EMC (Cu) .

1 J. Ashman et al., Z.
¥ Phys. C57, 211 (1993)

5(A) / o(D)
.1
o

. i J. Gomez et al., Phys.
L % Rev. D49, 4348 (1994)
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Coulomb Sum-Rule
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VOLUME 52, NUMBER 24 PHYSICAL REVIEW LETTERS 11 JUNE 1984

Coulomb Sum Rule for *°Ca, “8Ca, and *%Fe for |G| =< 550 MeV/c

Coulomb sum rule was computed and shows a
suppression of 30% for 4°Ca and of 20% for both
#Ca and *%Fe at a momentum transfer greater than
twice the Fermi momentum. We have observed a

TRANSVERSE AND LONGITUDINAL RESPONSE FUNCTIONS IN QUASIELASTIC
ELECTRON SCATTERING FROM NUCLEI

Zein-Eddine MEZIANI

Dept. of Physics, University of Virginia. Charlottesville, VA 22001 ™

Transverse and longitudinal response functions have been extracted for *He, 12C, ¥°Ca,
4Ca, and 56Fe up to a momentum transfer of 550 MeV/c. The quenching of the longitu-

dinal response function in the quasi-elastic region is significant and might be a signature of
modification of the intrinsic properties of the nucleon in nuclear matter.

Theoretical agreement with this interpretation: Noble, Celenza et al.,
Mulders, Ericson et al., Brown and Rho.........
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Physics Letters B 515 (2001) 269-275 —
WWW.e.

Is the Coulomb sum rule violated in nuclei?

J. Morgenstern®, Z.-E. Meziani®

* New measurements and careful

treatment of Coulomb distortion In conclusion, there i1s a good agreement between
the data from Saclay, SLAC, Bates 180° experiments

and Bates data taken with the new setup. We believe

11 [0 : : :
© e ] ¢ a) that we have established experimentally the existence
1.0 (2 Ca 4 P y
0“9 /.¥ca N .'__L - of a quenching of S; 1 medium and heavy nuclei
: I >< Fe T v I —
< | 208 ol as shown in Fig. 6. This quenching is not observed
5 08 " Pb 1 8 q g
S o7l P & \{ Q Jﬁ Il= in low-density nuclei such as *He and D [11.18]
D oosl < A K GO ”L o RK o and short-range correlations are not able to explain
e o) I 090 g P
05 f 71 | Y this effect. We interpref this as an indicafion for a
1170 e ' ) ) ’ b) change of the nucleon properties inside the nuclear
1.0 } (. Ca S medium. It we assume the dipole expression for the
0.9 | fzos,fb P S charge form factor, the observed quenching of the
0.8 --)I(-::Fe @//f ¢ ® CSR would comrespond to a relative change of the
07 | ®Fe 7 ‘;’ - _rlf!: KT proton charge radius of 13 + 4% in a heavy nucleus.
o P | The accuracy of the CSR could be improved and
05 | . _ . :
o _ _ _ . ‘ the g region extended up to 1 GeV/c with the new
200 300 400M v 500 600 1100 1200 generation of electron accelerators. Such a proposal
ev/c -
B ( ) has been approved recently at Jefferson Lab [51].
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These results potentially offer:

New Insight into the question:
What is the atomic nucleus?

There are two very different extremes....
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Quark Structure matters/doesn’t matter

* Nuclear femtography: the science of mapping the
quark and gluon structure of atomic nuclei is just
beginning, with new experimental facilities

OR

« “Considering quarks is in contrast to our modern
understanding of nuclear physics... the basic
degrees of freedom of QCD (quarks and gluons)
have to be considered only at higher energies. The
energies relevant for nuclear physics are only a few
MeV”
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What do we know?

« Since 1970s: Dispersion relations = intermediate range
NN attraction is a strong Lorentz scalar

* In relativistic treatments (RHF, RBHF, QHD...) this
leads to mean scalar field on a nucleon ~300 to 500 MeV!!
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Just one example of very large scalar mean-fields

1970 R. BROCKMANN AND R. MACHLEIDT

TABLE II. Results of a relativistic Dirac-Brueckner calculation in comparison to the
tential B. As a function of the Fermi momentum kg, it is listed: the energy per nucleon
vector potentials Us and Uy, and the wound integral «.

Relativistic
k, 6/ A Us U, X
(fm 1) (MeV) M/M (MeV) (MeV) (%)
0.8 —7.02 0.855 —136.2 104.0 23.1
0.9 —8.58 0.814 —174.2 134.1 18.8
1.0 —10.06 0.774 —212.2 164.2 16.1
1.1 —11.18 0.732 —251.3 195.5 12.7
1.2 - 12.35 0.691 —290.4 225.8 11.9
1.3 —13.35 0.646 —332.7 259.3 12.5
1.35 —13.55 0.621 —355.9 278.4 13.0
1.4 —13.53 0.601 —374.3 2934 13.8
1.5 —12.15 0.559 —413.6 3284 14.4
1.6 —8.46 0.515 —455.2 371.0 15.8
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What do we know?

Since 1970s: Dispersion relations = intermediate range
NN attraction is a strong Lorentz scalar

In relativistic treatments (RHF, RBHF, QHD...) this
leads to mean scalar field on a nucleon ~300 to 500 MeV!!

This is not small — up to half the nucleon mass

Largely cancelled by large vector mean field BUT these
have totally different dynamics: w? just shifts energies,
o seriously modifies internal hadron dynamics

Latter cannot be accurately captured by EFT with N and 1r
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Suggests a different approach : QMIC Model

(Guichon, Saito, Tsushima et al., Rodionov et al., Stone
- see Saito et al., Prog. Part. Nucl .Phys. 58 (2007) 1 and
Guichon et al., Prog. Part. Nucl. Phys. 100 (2018) 262-297 for reviews)

« Start with quark model (MIT bag/NJL...) for all hadrons

* Introduce a relativistic Lagrangian
with o, w and p mesons coupling
to non-strange quarks

 Hence, initially only 4 parameters

(mo- , goWP q)

- determine by fitting to:
Po E/A and symmetry energy

- same in dense matter & finite nuclei

NAE o, D,

-t
\ ‘,.
)

|

O = (o nuclear | )
matter

B hypernuclei

« Must solve self-consistently for the internal structure of

baryons in-medium
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Self-consistent solution for confined quarks in
a hadron in nuclear matter

[ivH0y — (mg — go95) — YOgu9@]Y = 0

Source of ¢ [Bag drp (7)) (F)

changes:
SELF-CONSISTENCY
and hence mean scalar field changes...
and hence quark wave function changes....

THIS PROVIDES A NATURAL SATURATION MECHANISM
(VERY EFFICIENT BECAUSE QUARKS ARE LIGHT)

source is suppressed as mean scalar field increases
(i.e. as density increases) @
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Quark-Meson Coupling Model (QMC):

Role of the Scalar Polarizability of the Nucleon

The response of the nucleon internal structure to the
scalar field is of great interest... and importance

Non-linear dependent€e through the scalar polarizability
d~0.22 Rin original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level,
this is the ONLY place the response of the
internal structure of the nucleon enters.
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Scalar Polarizability = Many-Body Forces

« Consequence of polarizability in atomic physics is

many-body forces:
V=V, + Vo +V13"@

— same is true in nuclear physics

* Three-body forces generated with NO new parameters
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Application to nuclear structure
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Derivation of Density Dependent Effective Force

Physical origin of density dependent forces of Skyrme
type within the quark meson coupling model

P.A.M. Guichon >*, H.H. Matevosyan ™¢, N. Sandulescu »%°,
A.W. Thomas®

Nuclear Physics A 772 (2006) 1-19

« Start with classical theory of MIT-bag nucleons with structure
modified in medium to give M (o).

* Quantise nucleon motion (non-relativistic),
expand in powers of derivatives

« Derive equivalent, local energy functional:

= T
(H(r)):fOM‘I' ﬂ + Ho + Hs + Hetr + Hfin + Hso
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Latest development: QMC pi3

« Correct to all order in nuclear density; add o3 term; calculate pairing
* Now just 5 parameters — cf. 15+ in typical Skyrme calculations
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Giant Monopole Resonances
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FIG. 13. GMR energies for *®Pb, "¥Sm, ""*Sn, and *°Zr from experiment and for the QMCx-I1 and SVmin models.
are taken from Table 1 of Ref. [24].
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Deformation Good: e.g. Gd (Z=64) isotopes
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Superheavy Nuclei Z 2100

For QMCTr-lll binding energies reproduced at better than 0.1%
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To be published — model details in Martinez et al.,
Phys Rev C102, 034304 (2020)
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Modified Electromagnetic Form Factors In-Medium
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Comparison with Unmodified Nucleon & Data
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Experimental Test at Mainz & JLab’

Capacity to measure polarization in coincidence:
e'
€

L
~

/1

‘He

- |

ot/ 6, ~ Ge/Gy : Compare ratio in “He and in free space

S. Dieterich et al. , Phys. Lett. BS00 (2001) 47; and JLab report 2002
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In-medium electron-nucleon scattering

&
60\ D.H. Lu * AW. Thomas ?, K. Tsushima ?*, A.G. Williams ?, K. Saito

v‘s
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Polarized
4He(e,e’p)
measuring
recoil p
polarization
(T/IL : Ge/IGy)

Jefferson Lab & Mainz

Strauch et al., EPJ Web of Conf. 36 (2012) 00016
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1.0

----- " Madrid RDWIA (RLF) A MAMI
Madrid RDWIA (RLF) + QMC
Madrid ROWIA (RLF) + cas ¥ =93-049
Schiavilla (2010) ® E03-104

-----------

1 5 5 2
Q° (GeV/c)
QMC medium effect predicted more than

a decade years before the experiment
(D.H. Lu et al., Phys. Lett. B 417 (1998) 217)




Nuclear DIS Structure Functions :
The EMC Effect

The QMC approach is ideal as one MUST start
with a theory that quantitatively describes
nuclear structure and allows calculation of
structure functions
— there are no other examples.....
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First calculation based on calculated change in structure
in-medium within QMC model - early 90s

RAPID COMMUNICATIONS

PHYSICAL REVIEW C VOLUME 46, NUMBER 6 DECEMBER 1992

Towards a microscopic understanding of nuclear structure functions

K. Saito
Physics Division, Tohoku College of Pharmacy, Sendai 981, Japan

A. Michels
Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford, United Kingdom

A. W. Thomas
Department of Physics and Mathematical Physics, University of Adelaide, P. O. Box 498, Adelaide, South Australia 5001, Australia
(Received 10 February 1992)

More recently by Bentz, Cloet and Thomas using
NJL rather than MIT bag model
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EMC Effect for Finite Nuclei

(There is also a spin dependent EMC effect - as large as unpolarized)

1.2 —T T 1 T T T T T T T T T 1.2 — T T T T T T T T T T
11 | - 27 J.
11 B 11 F .1511 E ; .I
= o 2 -E, ‘
[ S 1.1 / -l._!__i e
':E .0 i ] / r:g 0.9 - T s II! 71 ./
D - E a D T _ __.-""
= 08 -y Experiment: 12C S 08 b 4 Experiment: *TAl
M e Unpolarized EMC effect 1 H o [ Unpolarized EMC effect
0.7 + . : C pl3en T LT - _ . pls/l) i
| — Fnlarfzed EMC effect: Hgfﬁq QE _ V2 A i PDIM?ad EMC eftect: R:fzs-'z QE —seV?
06 L e Polarized EMC effect: R*¥ | oG L - Polarized EMC effect: R |
(i 0.2 04 (.6 0.8 1 i 0.2 0.4 0.6 0.8 1
I x
FIG. 7: The EMC and polarized EMC effect in "B. The  FIG. 9 The EMC and polarized EMC effect in 2" Al. The
empirical data is from Ref. [31]. empirical data is from Ref. [31].

- o 10€t, Bentz &Thomas, Phys. Lett. B642 (2006) 210
P (nucl-th/0605061)




Spin-EMC Effect is a crucial test

Tensor correlations leading to high momentum
components in nuclear wave function have been
proposed as an alternate explanation of the EMC
effect

The tensor force scatters 3S, pairs almost entirely into
3D, at high momentum (~84% at p > 400 MeV/c)

Nucleons in SRC are depolarized — simple Clebsch-
Gordan coefficients - and cannot contribute to spin-
EMC effect

That is, SRC idea gives essentially NO spin-EMC effect
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Approved JLab Experiment

@ Effectin "Liis slightly suppressed because it is a light nucleus and proton
does not carry all the spin  (simple WE: P, =13/15 & F, =2/15)

@ LExperiment now approved at JLab [E12-14-001] to measure spin structure
functions of 'LLi (GFMC: P, =086 & P, =0.04)

@ Everyone with their favourite explanation for the EMC effect should make a
prediction for the polarized EMC effect in " Li

1.2 .
1.1 } L]' {
| 4=
s 0.9
o
z 0.8
£
0.7 ¢  Experiment: °Be 1
L = = = Unpeolarized EMC effect QQ — FGeV? -
0.6 Polarized EMC effect
0 0.2 0.4 0.6 0.8 1
P ADELAIDE
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Linear relation of # in SRC vs Slope of EMC
effect ®» SRC explain the EMC effect

B. Schmookler et al., Nature 566 (2019) 354-358.

1.2 T I | | 208
0.05+ _
197
L1F . _
: = | .
™ i / 56
E . ' gk & ) Ty k;,.;,x’ 97
= RO 1{{ ¢ T / y
‘t s F R Tod { I iy e y L
~ 0.9 o 3 /{{ . i i 4 12
~ W L 0 Ty e
0.8 - = -0.05 ]
= JLab Hall C e _ _ o
-= This work + Median norm. uncertainty 4
0.7¢ ! 1 | ] ! 1 L 13

|
0.2 0.4 0.6 0.8 TR 0.2 0.4 0.6 0.8 rp

2l ADELAIDE
oA N |\ERSITY

MIC
[E=))) Ausrauia . . %
From Doug Higinbotham

STRY

My comment



Further: change in F, is dramatic in SRC approach

T T I 208
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Neutron Stars
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GW170817: Measurements of neutron star radii and equation of state

The LIGO Scientific Collaboration and The Virgo Collaboration
( compiled 30 May 2018)

On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational
waves from the coalescence of a neutron star binary system. The detection of this gravitational wave
signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme
conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and

ﬁ@fyﬁﬁéosfw . TTER@ arXiv:1805.11581




Neutron Star Interior Composition Explorer

Sizing Up the Most Massive Neutron
Star

Apnl 29, 2021+ Physics 14, 64
A satellite experiment has revealed that the heaviest known neutron star is unexpectedly large, which
suggests that the matter in the star's inner core is less “squeezable” than some models predict.

NICER
2021
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Goddard Space Flight Center

NICER. measures the size of a neutron star by tracking the x-ray emission from “hot spots” on
the surface as the star rotates. These spots occur at the magnetic poles of the star, where the
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Recent Study Motivated by GW170817

 Includes isovector scalar meson

Nicer
Constraint
Standard Fit Only
12.5 — 13.5km
1.75 F
Lsok GW170817
90% confidence ~13 km
1.25 F
"o
= 1.00
= L
0.75 F
0.50 F
—0O— No b
-0 Gs
0.25 H o 2 G5
11 12 13 14
R(km)

P73l ADELAIDE _
yumﬁsm ?«%'%‘R@ Motta, Kalaitzis et al., Ap J 878 (2019) 159




Species Fractions: in B-equilibrium
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Monthly Notices

MNRAS 502, 3476-3490 (2021) doi:10.1093/mnras/staa4006
Advance Access publication 2021 January 4

Equation of state of hot dense hyperonic matter in the
Quark-Meson-Coupling (QMC-A) model

J. R. Stone,** V. Dexheimer,”* P. A. M. Guichon,** A. W. Thomas® and S. Typel®
' | ' | ' | ' | ' |
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Tidal deformability

 Band deduced by LIGO-Virgo analysis of GW170817

1000
No o
CTTLS
800 - 2Gs
600
-
400
200
“’
{) | 1 1 | | 1 1
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
M [M.]
*y ADELAIDE
UNIVERSITY

AUSTRALIA

Motta, Kalaitzis et al., Ap J 878 (2019) 159



Outlook

* The study of Hadrons, Nuclei and Neutron
Stars is crucial to understanding QCD

« It seems natural that the structure of bound systems
will be modified in a strongly interacting medium

« Theoretical and experimental efforts to identify such
changes are vitally important

 Amongst other benefits these efforts promise a much
deeper and more satisfying understanding of nuclear structure

-~ APCTP Focus Program in
~ Nuclear Physics 2021: Part |

38 Sl L |l :
S ADELAIDE APCTP Focus Program in Nuclear Physics 2021 Part |: Hadron properties

b)) e >%?E(R@ in a nuclear medium from the quark and gluon degrees of freedom
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Key papers on QMC

 Two major, recent papers:

1. Guichon, Matevosyan, Sandulescu, Thomas,
Nucl. Phys. A772 (2006) 1.
2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502

* Built on earlier work on QMC: e.g.

3. Guichon, Phys. Lett. B200 (1988) 235
4. Guichon, Saito, Rodionov, Thomas,
Nucl. Phys. A601 (1996) 349

* Major review of applications of QMC to many
nuclear systems:

5. Saito, Tsushima, Thomas,
Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)
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References to: Covariant Version of QMC

* Basic Model: (Covariant, chiral, confining version of NJL)
‘Bentz & Thomas, Nucl. Phys. A696 (2001) 138

* Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95
» Applications to DIS:

» Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302
 Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210

» Applications to neutron stars — including SQM:

- Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495

- Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667
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