Toward a solution of the gap equation in Minkowski space

Cédric Mezrag

CEA Saclay, Irfu DPhN \& INFN sezione di Roma

$$
\text { February } 17^{\text {th }}, 2021
$$

In collaboration with Giovanni Salmè

Based on:
Eur.Phys.J.C 81 (2021) 1, 34

Disclaimer

- Rather technical talk as I was asked to speak specifically on our last paper
\rightarrow I try to make it as lively as possible
- For a review of application to observables, see e.g. P. Maris talk in December and topical review article on DSE-BSE
- I tried to come back on some points mentioned during the discussion following P. Maris talk (I could not attend to)

Introduction

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:
- bound states description

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:
- bound states description
- strong coupling regime (e.g. QCD in the infrared)

figure from Z.F. Cui et al., Chin.Phys.C 44
(2020) 8, 083102

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:
- bound states description
- strong coupling regime (e.g. QCD in the infrared)
- dynamical mass generation

figure from A. Bashir et al., Commun.Theor.Phys. 58 (2012) 79-134

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:
- bound states description
- strong coupling regime (e.g.

QCD in the infrared)

- dynamical mass generation
- Different approaches to non-perturbative physics
- Lightfront Hamiltonian
- ADS/QCD
- Lattice QCD
- Dyson-Schwinger/Bether Salpeter equations

Non-perturbative physics

- Perturbation theory: a powerful tool to describe scattering in QFT
- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- but some phenomena escape a perturbative description:
- bound states description
- strong coupling regime (e.g.

QCD in the infrared)

- dynamical mass generation
- Different approaches to non-perturbative physics
- Lightfront Hamiltonian
- ADS/QCD
- Lattice QCD
- Dyson-Schwinger/Bether Salpeter equations

Dyson-Schwinger equations

DSEs relate the N-point functions of a given QFT among each other.
Quark case:

$$
(-)^{-1}=(\square)^{-1}-
$$

Ghost case: $\quad(\square)^{-1}=(\square)^{-1}+\quad$.

Gluon case:

Coupled to higher N-point functions \rightarrow infinite set of equations

Vertex and Bethe-Salpeter equations

- 3-point functions also obey their own DSEs:

Vertex and Bethe-Salpeter equations

- 3-point functions also obey their own DSEs:

- Higher point functions present poles at bound-states masses \rightarrow residues yield the Bethe-Salpeter wave functions

Vertex and Bethe-Salpeter equations

- 3-point functions also obey their own DSEs:

- Higher point functions present poles at bound-states masses \rightarrow residues yield the Bethe-Salpeter wave functions

- DSE-BSE formalism provides a way to study bound states
- Approximations are required to close the system (truncations)

Euclidean vs. Minkowski Space

- Usually, DSE-BSE are solved numerically in Euclidean space
- External momenta are continued in the complex plane
- Can reveal itself numerically challenging
- A direct access to lighfront quantities can be difficult

Euclidean vs. Minkowski Space

- Usually, DSE-BSE are solved numerically in Euclidean space
- External momenta are continued in the complex plane
- Can reveal itself numerically challenging
- A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce
V. Sauli J. Phys. G30, 739 (2004)
S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017)
E. Solis et al., Few Body Syst.60(3), 49 (2019)
V. Sauli, aXiv:1909.03043

Euclidean vs. Minkowski Space

- Usually, DSE-BSE are solved numerically in Euclidean space
- External momenta are continued in the complex plane
- Can reveal itself numerically challenging
- A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce
V. Sauli J. Phys. G30, 739 (2004)
S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017)
E. Solis et al., Few Body Syst.60(3), 49 (2019)
V. Sauli, aXiv:1909.03043
- More BSE studies have been performed but using very simple kernels
K. Kusaka et al., Phys. Rev. D56, 5071 (1997)
V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27, 1 (2006)
T. Frederico et al., Phys. Rev. D89, 016010 (2014)
V. Sauli Int. J. Theor. Phys.54(11), 4131 (2015)
E. Ydrefors et al., Phys. Lett. B791, 276 (2019)
T. Frederico et al., arXiv:1905.00703

Euclidean vs. Minkowski Space

- Usually, DSE-BSE are solved numerically in Euclidean space
- External momenta are continued in the complex plane
- Can reveal itself numerically challenging
- A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce
V. Sauli J. Phys. G30, 739 (2004)
S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017)
E. Solis et al., Few Body Syst.60(3), 49 (2019)
V. Sauli, aXiv:1909.03043
- More BSE studies have been performed but using very simple kernels
K. Kusaka et al., Phys. Rev. D56, 5071 (1997)
V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27, 1 (2006)
T. Frederico et al., Phys. Rev. D89, 016010 (2014)
V. Sauli Int. J. Theor. Phys.54(11), 4131 (2015)
E. Ydrefors et al., Phys. Lett. B791, 276 (2019)
T. Frederico et al., arXiv:1905.00703

Our idea

Can we "export" to Minkowski space the theoretical progresses achieved in euclidean one?

Two-point functions in Minkowski space

Exploratory work: Abelian theory

- Abelian DSE are much simpler than QCD ones:

Fermion case:

$$
(-)^{-1}=(\square)^{-1}-
$$

Ghost case:

Photon case:

$$
(\cos)
$$

- Abelian theories presents interesting properties that can be exploited.

Propagators and Self-energies

- Fermion Case:

$$
\begin{aligned}
i S_{R}^{-1}\left(p, \zeta^{2}\right) & =\not p-m-\Sigma_{R}\left(p, \zeta^{2}\right) \\
\Sigma_{R}\left(p, \zeta^{2}\right) & =\not p \mathcal{A}_{R}\left(p, \zeta^{2}\right)+\mathcal{B}_{R}\left(p, \zeta^{2}\right)
\end{aligned}
$$

- Photon case in covariant gauges:

$$
\begin{aligned}
D_{R}^{\mu \nu}\left(q, \zeta^{2}\right) & =-i \frac{T^{\mu \nu}(q)}{\left(q^{2}+i \epsilon\right)\left(1+\Pi_{R}\left(q^{2}, \zeta^{2}\right)\right)} \\
T^{\mu \nu}(q) & =\eta^{\mu \nu}-(1-\xi) \frac{q^{\mu} q^{\nu}}{q^{2}}
\end{aligned}
$$

Källen-Lehmann representation

- The Källen-Lehmann representation is a key property of the propagator:

$$
\begin{aligned}
& S_{R}\left(p, \zeta^{2}\right)=i \mathcal{R}_{s} \frac{p p+m}{p^{2}-m^{2}+i \epsilon}+i \int_{s_{t h}}^{\infty} \frac{p \sigma_{v}(s, \zeta)+\sigma_{s}(s, \zeta)}{p^{2}-s+i \epsilon} \\
& D_{R}^{\mu \nu}(q, \zeta)=-i T^{\mu \nu}(q)\left(\frac{\mathcal{R}_{D}}{q^{2}+i \epsilon}+\int_{s_{t h}^{p}}^{\infty} \frac{\sigma_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}\right)
\end{aligned}
$$

with \mathcal{R}_{S} and \mathcal{R}_{D} the residues at the fermion and photon poles.

Källen-Lehmann representation

- The Källen-Lehmann representation is a key property of the propagator:

$$
\begin{aligned}
& S_{R}\left(p, \zeta^{2}\right)=i \mathcal{R}_{s} \frac{p p+m}{p^{2}-m^{2}+i \epsilon}+i \int_{s_{t h}}^{\infty} \frac{p \sigma_{v}(s, \zeta)+\sigma_{s}(s, \zeta)}{p^{2}-s+i \epsilon} \\
& D_{R}^{\mu \nu}(q, \zeta)=-i T^{\mu \nu}(q)\left(\frac{\mathcal{R}_{D}}{q^{2}+i \epsilon}+\int_{s_{t h}^{p}}^{\infty} \frac{\sigma_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}\right)
\end{aligned}
$$

with \mathcal{R}_{S} and \mathcal{R}_{D} the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
- asymptotic states
- complete set states

Källen-Lehmann representation

- The Källen-Lehmann representation is a key property of the propagator:

$$
\begin{aligned}
& S_{R}\left(p, \zeta^{2}\right)=i \mathcal{R}_{s} \frac{p p+m}{p^{2}-m^{2}+i \epsilon}+i \int_{s_{t h}}^{\infty} \frac{p \sigma_{v}(s, \zeta)+\sigma_{s}(s, \zeta)}{p^{2}-s+i \epsilon} \\
& D_{R}^{\mu \nu}(q, \zeta)=-i T^{\mu \nu}(q)\left(\frac{\mathcal{R}_{D}}{q^{2}+i \epsilon}+\int_{s_{t h}^{p}}^{\infty} \frac{\sigma_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}\right)
\end{aligned}
$$

with \mathcal{R}_{S} and \mathcal{R}_{D} the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
- asymptotic states
- complete set states
- Advantages: algebraic manipulation of the momenta

Källen-Lehmann representation

- The Källen-Lehmann representation is a key property of the propagator:

$$
\begin{aligned}
& S_{R}\left(p, \zeta^{2}\right)=i \mathcal{R}_{s} \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}+i \int_{s_{t h}}^{\infty} \frac{p \sigma_{v}(s, \zeta)+\sigma_{s}(s, \zeta)}{p^{2}-s+i \epsilon} \\
& D_{R}^{\mu \nu}(q, \zeta)=-i T^{\mu \nu}(q)\left(\frac{\mathcal{R}_{D}}{q^{2}+i \epsilon}+\int_{s_{t h}^{p}}^{\infty} \frac{\sigma_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}\right)
\end{aligned}
$$

with \mathcal{R}_{S} and \mathcal{R}_{D} the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
- asymptotic states
- complete set states
- Advantages: algebraic manipulation of the momenta

What about self energies?

Nakanishi representation I

- Nakinishi representation (also called Perturbative Integral Representation -PTIR-)
see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971

Nakanishi representation I

- Nakinishi representation (also called Perturbative Integral Representation -PTIR-)
see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971
- It relies graph theory (studies of graph having N external legs) and exploits Feynman trick

Nakanishi representation I

- Nakinishi representation (also called Perturbative Integral Representation -PTIR-)
see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971
- It relies graph theory (studies of graph having N external legs) and exploits Feynman trick
- It yields the following representations:

$$
\begin{aligned}
& Z_{2}(\zeta) \Sigma(p, \Lambda)=\int_{0}^{\infty}[\mathrm{d} s]_{\Lambda} \frac{\not p \rho_{A}\left(s, \zeta^{2}\right)+\rho_{B}\left(s, \zeta^{2}\right)}{p^{2}-s+i \epsilon} \\
& Z_{3}(\zeta) \Pi(q, \Lambda)=\int_{0}^{\infty}[\mathrm{d} s]_{\Lambda} \frac{\rho_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}
\end{aligned}
$$

allowing the algebraic manipulation of the momenta.

Nakanishi representation I

- Nakinishi representation (also called Perturbative Integral Representation -PTIR-)
see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971
- It relies graph theory (studies of graph having N external legs) and exploits Feynman trick
- It yields the following representations:

$$
\begin{aligned}
& Z_{2}(\zeta) \Sigma(p, \Lambda)=\int_{0}^{\infty}[\mathrm{d} s]_{\Lambda} \frac{\not p \rho_{A}\left(s, \zeta^{2}\right)+\rho_{B}\left(s, \zeta^{2}\right)}{p^{2}-s+i \epsilon} \\
& Z_{3}(\zeta) \Pi(q, \Lambda)=\int_{0}^{\infty}[\mathrm{d} s]_{\Lambda} \frac{\rho_{\gamma}\left(s, \zeta^{2}\right)}{q^{2}-s+i \epsilon}
\end{aligned}
$$

allowing the algebraic manipulation of the momenta.

- Such a representation is proven to hold at all order of perturbation theory

Nakanishi representation II

Advantages and drawback

Advantages

- Crucially, the ρ are unique and independent of the momenta.
- Such relations can be generalised to higher N-point functions, such as the vertex function $(\mathrm{N}=3)$, the scattering amplitude $(\mathrm{N}=4) \ldots$
see seminar by P. Maris in December

$$
\Gamma(k, P, \Lambda)=\int_{-1}^{1}[\mathrm{~d} z]_{\Lambda} \int_{0}^{\infty}[\mathrm{d} \beta]_{\wedge} \frac{\rho(z, \beta)}{\beta-\left(k+\frac{z}{2} P\right)^{2}}
$$

Nakanishi representation II

Advantages and drawback

Advantages

- Crucially, the ρ are unique and independent of the momenta.
- Such relations can be generalised to higher N-point functions, such as the vertex function $(\mathrm{N}=3)$, the scattering amplitude $(\mathrm{N}=4) \ldots$
see seminar by P. Maris in December

$$
\Gamma(k, P, \Lambda)=\int_{-1}^{1}[\mathrm{~d} z]_{\Lambda} \int_{0}^{\infty}[\mathrm{d} \beta]_{\Lambda} \frac{\rho(z, \beta)}{\beta-\left(k+\frac{z}{2} P\right)^{2}}
$$

Drawback

- All order of perturbation theory \neq non-perturbatively \rightarrow weaker than the "Källen-Lehmann" proof (at least in Abelian case) However:
assume that the Nakanishi representation hold non-perturbatively price to pay might be that ρ are not smooth functions

Nakanishi representation III
 Previous studies

- Previously used for the self-energy through direct computations
V. Sauli, J. Phys., 2004, G30, 739-758
- And also in the case of the vertex function
- Using simple algebraic ρ functions
C. Mezrag et al., PLB 741 (2015) 190-196
N. Chouika et al., PLB 780 (2018) 287-293
- attempts of direct calculations in Minkowski space
J. Carbonell et al., Eur. Phys. J., 2017, C77, 58 J. H. Alvarenga Nogueira et al., PRD 100, 2019, 016021
- or trying to solve the inverse "Nakanishi problem" through Bayesian techniques in euclidean space
F. Gao et al., PLB770 551-555 (2017)

We will look for a direct computation through the DSE

Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge

Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
- Standard on-shell scheme $\left(\zeta^{2}=m^{2}\right)$:

$$
\begin{aligned}
m \mathcal{A}_{R}\left(m^{2}, m^{2}\right)+\mathcal{B}_{R}\left(m^{2}, m^{2}\right) & =0 \\
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)+2 m\left(m \frac{\partial \mathcal{A}_{R}}{\partial p^{2}}\left(m^{2}, m^{2}\right)+\frac{\partial \mathcal{B}}{\partial p^{2}}\left(m^{2}, m^{2}\right)\right) & =0
\end{aligned}
$$

mixes \mathcal{A}_{R} and $\mathcal{B}_{R} \rightarrow$ cumbersome for an exploratory study

Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
- Standard on-shell scheme $\left(\zeta^{2}=m^{2}\right)$:

$$
\begin{aligned}
m \mathcal{A}_{R}\left(m^{2}, m^{2}\right)+\mathcal{B}_{R}\left(m^{2}, m^{2}\right) & =0 \\
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)+2 m\left(m \frac{\partial \mathcal{A}_{R}}{\partial p^{2}}\left(m^{2}, m^{2}\right)+\frac{\partial \mathcal{B}}{\partial p^{2}}\left(m^{2}, m^{2}\right)\right) & =0
\end{aligned}
$$

mixes \mathcal{A}_{R} and $\mathcal{B}_{R} \rightarrow$ cumbersome for an exploratory study

- $\mathrm{RI}^{\prime} / \mathrm{MOM}$ scheme "on-shell" $\left(\zeta^{2}=m^{2}\right)$:

$$
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)=0 \quad \mathcal{B}_{R}\left(m^{2}, m^{2}\right)=0
$$

price to pay: the residue at the pole is not 1 anymore

Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
- Standard on-shell scheme $\left(\zeta^{2}=m^{2}\right)$:

$$
\begin{aligned}
m \mathcal{A}_{R}\left(m^{2}, m^{2}\right)+\mathcal{B}_{R}\left(m^{2}, m^{2}\right) & =0 \\
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)+2 m\left(m \frac{\partial \mathcal{A}_{R}}{\partial p^{2}}\left(m^{2}, m^{2}\right)+\frac{\partial \mathcal{B}}{\partial p^{2}}\left(m^{2}, m^{2}\right)\right) & =0
\end{aligned}
$$

mixes \mathcal{A}_{R} and $\mathcal{B}_{R} \rightarrow$ cumbersome for an exploratory study

- $\mathrm{RI}^{\prime} / \mathrm{MOM}$ scheme "on-shell" $\left(\zeta^{2}=m^{2}\right)$:

$$
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)=0 \quad \mathcal{B}_{R}\left(m^{2}, m^{2}\right)=0
$$

price to pay: the residue at the pole is not 1 anymore

- Photon case : standard $\Pi_{R}\left(\zeta_{p}^{2}, \zeta_{p}^{2}\right)=0$ for ζ_{p} being a IR regulator

Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
- Standard on-shell scheme $\left(\zeta^{2}=m^{2}\right)$:

$$
\begin{aligned}
m \mathcal{A}_{R}\left(m^{2}, m^{2}\right)+\mathcal{B}_{R}\left(m^{2}, m^{2}\right) & =0 \\
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)+2 m\left(m \frac{\partial \mathcal{A}_{R}}{\partial p^{2}}\left(m^{2}, m^{2}\right)+\frac{\partial \mathcal{B}}{\partial p^{2}}\left(m^{2}, m^{2}\right)\right) & =0
\end{aligned}
$$

mixes \mathcal{A}_{R} and $\mathcal{B}_{R} \rightarrow$ cumbersome for an exploratory study

- RI'/MOM scheme "on-shell" ($\zeta^{2}=m^{2}$):

$$
\mathcal{A}_{R}\left(m^{2}, m^{2}\right)=0 \quad \mathcal{B}_{R}\left(m^{2}, m^{2}\right)=0
$$

price to pay: the residue at the pole is not 1 anymore

- Photon case : standard $\Pi_{R}\left(\zeta_{p}^{2}, \zeta_{p}^{2}\right)=0$ for ζ_{p} being a IR regulator
- Renormalisation constant given in terms of Nakanishi weights:

$$
Z_{2}(\zeta=m, \Lambda)=1+\int_{m^{2}}^{\infty}[\mathrm{d} s]_{\wedge} \frac{\rho_{A}(s, \zeta)}{m^{2}-s+i \epsilon}
$$

Divide \& rule strategy

First set of equations

- Exploit our various expressions for S_{R} (and $D_{R}^{\mu \nu}$)

$$
\begin{aligned}
S_{R}\left(p, \zeta^{2}\right) & =\mathcal{R}_{s} \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}+\int_{s_{t h}}^{\infty} \frac{p \sigma_{v}\left(s, \zeta^{2}\right)+\sigma_{s}\left(s, \zeta^{2}\right)}{p^{2}-s+i \epsilon} \\
& =\frac{\not p\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)+m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}
\end{aligned}
$$

Divide \& rule strategy

First set of equations

- Exploit our various expressions for S_{R} (and $D_{R}^{\mu \nu}$)

$$
\begin{aligned}
S_{R}\left(p, \zeta^{2}\right) & =\mathcal{R}_{s} \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}+\int_{s_{t h}}^{\infty} \frac{\not p \sigma_{v}\left(s, \zeta^{2}\right)+\sigma_{s}\left(s, \zeta^{2}\right)}{p^{2}-s+i \epsilon} \\
& =\frac{\not p\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)+m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}
\end{aligned}
$$

- Using the Sokhotski-Plemelj formula for $p^{2}>m^{2}$

$$
\begin{aligned}
& \sigma_{v}\left(p^{2}, \zeta^{2}\right)=\frac{-1}{\pi} \Im\left(\frac{\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}\right) \\
& \sigma_{s}\left(p^{2}, \zeta^{2}\right)=\frac{-1}{\pi} \Im\left(\frac{m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}\right)
\end{aligned}
$$

Divide \& rule strategy

First set of equations

- Exploit our various expressions for S_{R} (and $D_{R}^{\mu \nu}$)
- Using the Sokhotski-Plemelj formula for $p^{2}>m^{2}$

$$
\begin{aligned}
& \sigma_{v}\left(p^{2}, \zeta^{2}\right)=\frac{-1}{\pi} \Im\left(\frac{\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}\right) \\
& \sigma_{s}\left(p^{2}, \zeta^{2}\right)=\frac{-1}{\pi} \Im\left(\frac{m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)}{p^{2}\left(1-\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}-\left(m+\mathcal{B}_{R}\left(p^{2}, \zeta^{2}\right)\right)^{2}}\right)
\end{aligned}
$$

- It yields the σ as (non-linear) functions of the ρ

$$
\begin{aligned}
\sigma_{v}\left(p^{2}, \zeta^{2}\right) & =F_{v}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\} \\
\sigma_{s}\left(p^{2}, \zeta^{2}\right) & =F_{s}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\}
\end{aligned}
$$

Divide \& rule strategy

First set of equations

- Exploit our various expressions for S_{R} (and $D_{R}^{\mu \nu}$)
- Using the Sokhotski-Plemelj formula for $p^{2}>m^{2}$
- It yields the σ as (non-linear) functions of the ρ

$$
\begin{aligned}
& \sigma_{v}\left(p^{2}, \zeta^{2}\right)=F_{v}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\} \\
& \sigma_{s}\left(p^{2}, \zeta^{2}\right)=F_{s}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\}
\end{aligned}
$$

- This yields 3 equations in our system of 6 unknown $\left(\sigma_{v}, \sigma_{s}, \sigma_{\gamma}, \rho_{A}, \rho_{B}, \rho_{\gamma}\right)$

Divide \& rule strategy

First set of equations

- Exploit our various expressions for S_{R} (and $D_{R}^{\mu \nu}$)
- Using the Sokhotski-Plemelj formula for $p^{2}>m^{2}$
- It yields the σ as (non-linear) functions of the ρ

$$
\begin{aligned}
\sigma_{v}\left(p^{2}, \zeta^{2}\right) & =F_{v}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\} \\
\sigma_{s}\left(p^{2}, \zeta^{2}\right) & =F_{s}\left\{\rho_{A}, \rho_{B}, P V\left[\frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right], P V\left[\frac{\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s\right)\left(\zeta^{2}-s\right)}\right]\right\}
\end{aligned}
$$

- This yields 3 equations in our system of 6 unknown $\left(\sigma_{v}, \sigma_{s}, \sigma_{\gamma}, \rho_{A}, \rho_{B}, \rho_{\gamma}\right)$
- 3 more are provided by the gap equations.

Abelian DSEs in Minkowski space In Search of Lost Vertex

Abelian Gap equations

$$
\begin{gathered}
(-)^{-1}=(\cdots)^{-1} \\
\Sigma_{R}(\zeta ; p)=-i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
\times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{R}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{R}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\} \\
\Pi_{R}(\zeta ; q)= \\
-i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
\left.\times\left\{\frac{1}{q^{2}} \Gamma_{R}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{R}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right]
\end{gathered}
$$

Abelian Gap equations

$$
\begin{gathered}
(-)^{-1}=(\cdots)^{-1} \\
(m))^{-1}=(m m m)^{-1}+ \\
\Sigma_{R}(\zeta ; p)=-i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
\times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{R}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{R}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\} \\
\Pi_{R}(\zeta ; q)=-i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
\left.\times\left\{\frac{1}{q^{2}} \Gamma_{R}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{R}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right]
\end{gathered}
$$

The last thing to get under control is the vertex

Tree-level vertex approximation

- First thing one could look at: neglecting higher point functions:

- Independent of the momenta \rightarrow all momenta degrees of freedom of the self-energy can be algebraically manipulated
- It works well for the fermion self-energy

Tree-level vertex approximation

- First thing one could look at: neglecting higher point functions:

- Independent of the momenta \rightarrow all momenta degrees of freedom of the self-energy can be algebraically manipulated
- It works well for the fermion self-energy

Major issues

- The vacuum polarisation tensor $\Pi^{\mu \nu}$ is not transverse anymore
- Quadratic divergences (proportional to $\eta^{\mu \nu}$) do not vanish as they should

Ward-Takahashi Identities

- Ward-Takahashi Identities are the consequence of current conservation

Ward-Takahashi Identities

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.

Ward-Takahashi Identities

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$
\begin{aligned}
& \left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right) \\
= & \underbrace{\left(k_{2}-\not k_{1}\right)}-\left(k_{2} \mathcal{A}_{R}\left(k_{2}\right)-k_{1} \mathcal{A}_{R}\left(k_{1}\right)\right)-\left(\mathcal{B}_{R}\left(k_{2}\right)-\mathcal{B}_{R}\left(k_{1}\right)\right)
\end{aligned}
$$

tree-level vertex

Ward-Takahashi Identities

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$
\begin{aligned}
& \left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right) \\
= & \underbrace{\left(k_{2}-\not k_{1}\right)}_{\text {tree-level vertex }}-\left(k_{2} \mathcal{A}_{R}\left(k_{2}\right)-k_{1} \mathcal{A}_{R}\left(k_{1}\right)\right)-\left(\mathcal{B}_{R}\left(k_{2}\right)-\mathcal{B}_{R}\left(k_{1}\right)\right)
\end{aligned}
$$

A tree level vertex violates the WTI \rightarrow not suitable for handling the photon

Ward-Takahashi Identities

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$
\begin{aligned}
& \left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right) \\
= & \underbrace{\left(k_{2}-\not k_{1}\right)}-\left(k_{2} \mathcal{A}_{R}\left(k_{2}\right)-k_{1} \mathcal{A}_{R}\left(k_{1}\right)\right)-\left(\mathcal{B}_{R}\left(k_{2}\right)-\mathcal{B}_{R}\left(k_{1}\right)\right)
\end{aligned}
$$

tree-level vertex

A tree level vertex violates the WTI \rightarrow not suitable for handling the photon

Need to build a vertex fulfilling all the required symmetry properties

Ball-Chiu vertex I

Exploiting WTI

- Instead of using the DSE to build the vertex, use directly the WTI:

$$
\left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right)
$$

\rightarrow build the vertex from the propagator instead of the scattering kernel

Ball-Chiu vertex I

Exploiting WTI

- Instead of using the DSE to build the vertex, use directly the WTI:

$$
\left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right)
$$

\rightarrow build the vertex from the propagator instead of the scattering kernel

- The idea behind the use of the Ball-Chiu vertex:

$$
\begin{aligned}
\Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right) & =\Gamma_{B C}^{\mu}\left(k_{2}, k_{1}, \zeta\right)+\Gamma_{T}^{\mu}\left(k_{2}, k_{1}, \zeta\right) \\
& =\underbrace{\sum_{i=1}^{4} \lambda_{i}^{\mu}\left(k_{2}, k_{1}\right) F_{i}\left(k_{2}, k_{1}, \zeta\right)}_{\text {Fully determined by the WTI }}+\sum_{j=1}^{8} \tau_{j}^{\mu}\left(k_{2}, k_{1}\right) F_{j}^{T}\left(k_{2}, k_{1}, \zeta\right)
\end{aligned}
$$

J. Ball and T.-W. Chiu, PRD 22 (1980) 2550

Ball-Chiu vertex I

Exploiting WTI

- Instead of using the DSE to build the vertex, use directly the WTI:

$$
\left(k_{2}-k_{1}\right)_{\mu} \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=i S_{R}^{-1}\left(k_{2}, \zeta\right)-i S_{R}^{-1}\left(k_{1}, \zeta\right)
$$

\rightarrow build the vertex from the propagator instead of the scattering kernel

- The idea behind the use of the Ball-Chiu vertex:

$$
\Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=\Gamma_{B C}^{\mu}\left(k_{2}, k_{1}, \zeta\right)
$$

$$
=\underbrace{\sum_{i=1}^{4} \lambda_{i}^{\mu}\left(k_{2}, k_{1}\right) F_{i}\left(k_{2}, k_{1}, \zeta\right)}_{\text {Fully determined by the WTI }}+\sum^{8} \tau_{j}^{\mu}\left(k_{2}, k_{j}\right) k_{2}, k_{1}, \zeta)
$$

J. Ball and T.-W. Chiu, PRD 22 (1980) 2550

$$
\text { Ball-Chiu approximation: } \Gamma_{R}^{\mu}\left(k_{2}, k_{1}, \zeta\right)=\Gamma_{B C}^{\mu}\left(k_{2}, k_{1}, \zeta\right)
$$

Ball-Chiu Vertex II

Obtaining a closed system

cea

- Detailed structure of the $B C$ vertex:

$$
\begin{aligned}
\lambda_{1}^{\mu}=\frac{\gamma^{\mu}}{2} & \rightarrow \quad F_{1}\left(k_{2}, k_{1}, \zeta\right)=2-\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right) \\
\lambda_{2}^{\mu}=-\frac{k_{1}+k_{2}}{2}\left(k_{1}+k_{2}\right)^{\mu} & \rightarrow \quad F_{2}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{3}^{\mu}=-\left(k_{2}+k_{1}\right)^{\mu} & \rightarrow \quad F_{3}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{B}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{B}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{4}^{\mu}=\left(k_{1}+k_{2}\right)_{\nu} \sigma^{\mu \nu} & \rightarrow F_{4}\left(k_{2}, k_{1}, \zeta\right)=0
\end{aligned}
$$

Ball-Chiu Vertex II

Obtaining a closed system

- Detailed structure of the $B C$ vertex:

$$
\begin{aligned}
\lambda_{1}^{\mu}=\frac{\gamma^{\mu}}{2} & \rightarrow F_{1}\left(k_{2}, k_{1}, \zeta\right)=2-\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right) \\
\lambda_{2}^{\mu}=-\frac{k_{1}+k_{2}}{2}\left(k_{1}+k_{2}\right)^{\mu} & \rightarrow F_{2}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{3}^{\mu}=-\left(k_{2}+k_{1}\right)^{\mu} & \rightarrow F_{3}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{B}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{B}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{4}^{\mu}=\left(k_{1}+k_{2}\right)_{\nu} \sigma^{\mu \nu} & \rightarrow F_{4}\left(k_{2}, k_{1}, \zeta\right)=0
\end{aligned}
$$

- Recalling the Nakanishi representation:

$$
\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)=\left(\zeta^{2}-p^{2}\right) \int_{0}^{\infty} \mathrm{d} s \frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s+i \epsilon\right)\left(\zeta^{2}-s\right)}
$$

Ball-Chiu Vertex II

Obtaining a closed system

- Detailed structure of the $B C$ vertex:

$$
\begin{aligned}
\lambda_{1}^{\mu}=\frac{\gamma^{\mu}}{2} & \rightarrow \quad F_{1}\left(k_{2}, k_{1}, \zeta\right)=2-\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right) \\
\lambda_{2}^{\mu}=-\frac{k_{1}+k_{2}}{2}\left(k_{1}+k_{2}\right)^{\mu} & \rightarrow \quad F_{2}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{A}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{A}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{3}^{\mu}=-\left(k_{2}+k_{1}\right)^{\mu} & \rightarrow \quad F_{3}\left(k_{2}, k_{1}, \zeta\right)=\frac{\mathcal{B}_{R}\left(k_{2}^{2}, \zeta^{2}\right)-\mathcal{B}_{R}\left(k_{1}^{2}, \zeta^{2}\right)}{k_{2}^{2}-k_{1}^{2}} \\
\lambda_{4}^{\mu}=\left(k_{1}+k_{2}\right)_{\nu} \sigma^{\mu \nu} & \rightarrow F_{4}\left(k_{2}, k_{1}, \zeta\right)=0
\end{aligned}
$$

- Recalling the Nakanishi representation:

$$
\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)=\left(\zeta^{2}-p^{2}\right) \int_{0}^{\infty} \mathrm{d} s \frac{\rho_{A}\left(s, \zeta^{2}\right)}{\left(p^{2}-s+i \epsilon\right)\left(\zeta^{2}-s\right)}
$$

we obtain a vertex which
by construction fulfil the $\mathrm{WTI} \rightarrow \Pi_{R}^{\mu \nu}$ is transverse and finite
depends only on the fermion self energy \rightarrow the system is closed
allow algebraic manipulation of the momenta degrees of freedom

Ball-Chiu Vertex III

Renormalisation

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

Ball-Chiu Vertex III

Renormalisation

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

$\Sigma_{R}(\zeta ; p)$ becomes logarithmically divergent!

Ball-Chiu Vertex III

Renormalisation

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{B C}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{B C}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

$\Sigma_{R}(\zeta ; p)$ becomes logarithmically divergent!

Where do these new singularities come from?

$$
F_{1}(k, p, \zeta)=2-\mathcal{A}_{R}\left(k^{2}, \zeta^{2}\right)-\underbrace{\mathcal{A}_{R}\left(p^{2}, \zeta^{2}\right)}_{\rightarrow 0 \text { when } p^{2} \rightarrow \zeta^{2}}
$$

\rightarrow some logarithmic singularities are not subtracted by our renormalisation procedure

Renormalisation and $B C$ vertex

- Is this a problem with our renormalisation condition $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right)=0$? \rightarrow no, if $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right) \neq 0$ the singularities do not compensate

Renormalisation and $B C$ vertex

- Is this a problem with our renormalisation condition $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right)=0$? \rightarrow no, if $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation
D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

Renormalisation and $B C$ vertex

- Is this a problem with our renormalisation condition $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right)=0$? \rightarrow no, if $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation

> D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

- This issue can be fixed using Γ_{T}^{μ}

$$
\Gamma_{P C}^{\mu}(\zeta ; k, p)=\Gamma_{B C}^{\mu}(\zeta ; k, p)+\tau_{6}^{\mu} F_{6 ; P C}^{T}\left(k^{2}, p^{2}, \zeta^{2}\right)
$$

Renormalisation and $B C$ vertex

- Is this a problem with our renormalisation condition $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right)=0$? \rightarrow no, if $\mathcal{A}_{R}\left(\zeta^{2}, \zeta^{2}\right) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation

> D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

- This issue can be fixed using Γ_{T}^{μ}

$$
\Gamma_{P C}^{\mu}(\zeta ; k, p)=\Gamma_{B C}^{\mu}(\zeta ; k, p)+\tau_{6}^{\mu} F_{6 ; P C}^{T}\left(k^{2}, p^{2}, \zeta^{2}\right)
$$

- Solution to the issue is not unique \rightarrow constraints on the purely transverse components to fulfil multiplicative renormalisation
A. Bashir et al., PRC 85, 045205 (2012)

transverse WTI

- Lesser known transverse WTIs $(q=k-p, t=k+p)$:

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p)+A_{\mu \nu}^{V}(k, p) \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \gamma_{5} \sigma_{\mu \nu}+\gamma_{5} \sigma_{\mu \nu} S^{-1}(k) \\
& +t^{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma^{\rho}(k, p)+V_{\mu \nu}^{A}(k, p)
\end{aligned}
$$

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013
H.-X. He, Commun. Theor. Phys.46, 109 (2006)
H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007)
S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

transverse WTI

- Lesser known transverse WTIs $(q=k-p, t=k+p)$:

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p)+A_{\mu \nu}^{V}(k, p) \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \gamma_{5} \sigma_{\mu \nu}+\gamma_{5} \sigma_{\mu \nu} S^{-1}(k) \\
& +t^{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma^{\rho}(k, p)+V_{\mu \nu}^{A}(k, p)
\end{aligned}
$$

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013

- Some comments:
- Take advantage of the curl of the vertex $(\nabla \times \Gamma)$

transverse WTI

- Lesser known transverse WTIs $(q=k-p, t=k+p)$:

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p)+A_{\mu \nu}^{V}(k, p) \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \gamma_{5} \sigma_{\mu \nu}+\gamma_{5} \sigma_{\mu \nu} S^{-1}(k) \\
& +t^{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma^{\rho}(k, p)+V_{\mu \nu}^{A}(k, p)
\end{aligned}
$$

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013

- Some comments:
- Take advantage of the curl of the vertex $(\nabla \times \Gamma)$
- Coupled equations between vector and axial-vector vertices

transverse WTI

- Lesser known transverse WTIs $(q=k-p, t=k+p)$:

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p)+A_{\mu \nu}^{V}(k, p) \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \gamma_{5} \sigma_{\mu \nu}+\gamma_{5} \sigma_{\mu \nu} S^{-1}(k) \\
& +t^{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma^{\rho}(k, p)+V_{\mu \nu}^{A}(k, p)
\end{aligned}
$$

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013

- Some comments:
- Take advantage of the curl of the vertex $(\nabla \times \Gamma)$
- Coupled equations between vector and axial-vector vertices
- Involve higher-point functions $\Gamma_{\mu \nu}, A_{\mu \nu}^{V}$ and $V_{\mu \nu}^{A}$

transverse WTI

- Lesser known transverse WTIs $(q=k-p, t=k+p)$:

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p)+A_{\mu \nu}^{V}(k, p) \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \gamma_{5} \sigma_{\mu \nu}+\gamma_{5} \sigma_{\mu \nu} S^{-1}(k) \\
& +t^{\lambda} \epsilon_{\lambda \mu \nu \rho} \Gamma^{\rho}(k, p)+V_{\mu \nu}^{A}(k, p)
\end{aligned}
$$

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013
H.-X. He, Commun. Theor. Phys.46, 109 (2006)
H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007)
S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

- Some comments:
- Take advantage of the curl of the vertex $(\nabla \times \Gamma)$
- Coupled equations between vector and axial-vector vertices
- Involve higher-point functions $\Gamma_{\mu \nu}, A_{\mu \nu}^{V}$ and $V_{\mu \nu}^{A}$
- Fully constrain the vertex in terms of the self energy for $1+1$ QED K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)

The Qin vertex I

Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ_{μ}^{T} relating it to higher N-point function
- for $j \in(1,2,4,6,7), F_{j}^{T}$ solely depends on higher N-point functions
- for $j \in(3,5,8), F_{j}^{T}$ depends also on the fermion self-energy

$$
\text { S.-X. Qin et al., Phys.Lett.B } 722 \text { (2013) 384-388 }
$$

The Qin vertex I

Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ_{μ}^{T} relating it to higher N-point function
- for $j \in(1,2,4,6,7), F_{j}^{T}$ solely depends on higher N-point functions
- for $j \in(3,5,8), F_{j}^{T}$ depends also on the fermion self-energy

$$
\text { S.-X. Qin et al., Phys.Lett.B } 722 \text { (2013) 384-388 }
$$

- Neglecting higher N-point functions, the Qin et al. truncation yields:

$$
\begin{aligned}
& F_{3}^{T}(k, p)=-\frac{\mathcal{A}_{R}\left(k^{2}\right)-\mathcal{A}_{R}\left(p^{2}\right)}{2\left(k^{2}-p^{2}\right)} \\
& F_{5}^{T}(k, p)=\frac{\mathcal{B}_{R}\left(k^{2}\right)-\mathcal{B}_{R}\left(p^{2}\right)}{\left(k^{2}-p^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& F_{8}^{T}(k, p)=\frac{\mathcal{A}_{R}\left(k^{2}\right)-\mathcal{A}_{R}\left(p^{2}\right)}{\left(k^{2}-p^{2}\right)} \\
& F_{j}^{T}(k, p)=0 \quad \text { for } j \neq(3,5,8)
\end{aligned}
$$

The Qin vertex I

Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ_{μ}^{T} relating it to higher N-point function
- for $j \in(1,2,4,6,7), F_{j}^{T}$ solely depends on higher N-point functions
- for $j \in(3,5,8), F_{j}^{T}$ depends also on the fermion self-energy

$$
\text { S.-X. Qin et al., Phys.Lett.B } 722 \text { (2013) 384-388 }
$$

- Neglecting higher N-point functions, the Qin et al. truncation yields:

$$
\begin{array}{ll}
F_{3}^{T}(k, p)=-\frac{\mathcal{A}_{R}\left(k^{2}\right)-\mathcal{A}_{R}\left(p^{2}\right)}{2\left(k^{2}-p^{2}\right)} & F_{8}^{T}(k, p)=\frac{\mathcal{A}_{R}\left(k^{2}\right)-\mathcal{A}_{R}\left(p^{2}\right)}{\left(k^{2}-p^{2}\right)} \\
F_{5}^{T}(k, p)=\frac{\mathcal{B}_{R}\left(k^{2}\right)-\mathcal{B}_{R}\left(p^{2}\right)}{\left(k^{2}-p^{2}\right)} & F_{j}^{T}(k, p)=0 \text { for } j \neq(3,5,8)
\end{array}
$$

This is not a standard vertex truncation:

- it does not involve any "graph" discussion (ladder, cross-ladder, ...)
- it purely relies on symmetry considerations

The Qin vertex II

Application and Impact

- Impact of the Qin vertex :
- $F_{3}^{T}(k, p)$ and $F_{8}^{T}(k, p)$ together cure the $B C$ vertex \rightarrow we get both Σ_{R} and Π_{R} finite !
- $F_{5}^{T}(k, p)$ is not considered here \rightarrow it might create troubles
A. Bashir et al., PRC 85, 045205 (2012)

The Qin vertex II

Application and Impact

- Impact of the Qin vertex :
- $F_{3}^{T}(k, p)$ and $F_{8}^{T}(k, p)$ together cure the $B C$ vertex \rightarrow we get both Σ_{R} and Π_{R} finite !
- $F_{5}^{T}(k, p)$ is not considered here \rightarrow it might create troubles
A. Bashir et al., PRC 85, 045205 (2012)
- Summarising, on the 12 independent structures, we get:
- 3 are exactly and purely given in terms of Σ_{R}
- 1 is exactly zero
- 3 are approximately given in terms of Σ_{R} only
- 5 are neglected

The Qin vertex II

Application and Impact

- Impact of the Qin vertex :
- $F_{3}^{T}(k, p)$ and $F_{8}^{T}(k, p)$ together cure the $B C$ vertex \rightarrow we get both Σ_{R} and Π_{R} finite!
- $F_{5}^{T}(k, p)$ is not considered here \rightarrow it might create troubles
A. Bashir et al., PRC 85, 045205 (2012)
- Summarising, on the 12 independent structures, we get:
- 3 are exactly and purely given in terms of Σ_{R}
- 1 is exactly zero
- 3 are approximately given in terms of Σ_{R} only
- 5 are neglected
- The Qin vertex is a long way from the tree-level one
- The symmetries are merciless \rightarrow they determine the truncation

Abelian DSEs in Minkowski space Coupled equations for Nakanishi weights

Back to the Gap equations

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

Back to the Gap equations

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

- Straightforward, albeit tedious, steps:
- replace $\Pi_{R}, \mathcal{A}_{R}, \mathcal{B}_{R}$ with their Nakanishi representations
- replace S_{R} and D_{R} with their Källen-Lehmann representations
- reduce the rhs to the same denominator through the Feynman trick
- integrate over k for p and q spacelike

Back to the Gap equations

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right)= & -i Z_{1}(\zeta, \Lambda) \frac{4}{3} e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{P}_{\mu \nu} \frac{1}{4} \operatorname{Tr}\left[\gamma^{\mu} S_{R}(\zeta, k)\right. \\
& \left.\times\left\{\frac{1}{q^{2}} \Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)-\frac{1}{\zeta_{p}^{2}}\left[\Gamma_{Q}^{\nu}(\zeta, k, q) S_{R}(\zeta, k-q)\right]_{q^{2}=\zeta_{p}^{2}}\right\}\right] \\
\Sigma_{R}(\zeta ; p)= & -i Z_{1}(\zeta, \Lambda) e_{R}^{2} \int_{\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\beta} S_{R}(\zeta, k) \\
& \times\left\{D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)-\left[D_{\beta \alpha}^{R}(\zeta, p-k) \Gamma_{Q}^{\alpha}(\zeta ; k, p)\right]_{p^{2}=\zeta^{2}}\right\}
\end{aligned}
$$

- Straightforward, albeit tedious, steps:
- replace $\Pi_{R}, \mathcal{A}_{R}, \mathcal{B}_{R}$ with their Nakanishi representations
- replace S_{R} and D_{R} with their Källen-Lehmann representations
- reduce the rhs to the same denominator through the Feynman trick
- integrate over k for p and q spacelike
- Less straightforward steps:
- rearrange the rhs and perform the proper change of variable to obtain the same structure of external momentum than the Ihs
- finally use the unicity of the Nakanishi representation to identify the gap equation fulfilled by the weight

Change of Variable

- The Nakanishi representations yield:

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right) & =\left(\zeta_{p}^{2}-q^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{\rho_{\gamma}\left(s, \zeta^{2}\right)}{\left(q^{2}-s+i \epsilon\right)\left(\zeta_{p}^{2}-s\right)} \\
\Sigma_{R}(\zeta ; q) & =\left(\zeta^{2}-p^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{p \rho_{A}\left(s, \zeta^{2}\right)+\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s+i \epsilon\right)\left(\zeta^{2}-s\right)}
\end{aligned}
$$

Change of Variable

- The Nakanishi representations yield:

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right) & =\left(\zeta_{p}^{2}-q^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{\rho_{\gamma}\left(s, \zeta^{2}\right)}{\left(q^{2}-s+i \epsilon\right)\left(\zeta_{p}^{2}-s\right)} \\
\Sigma_{R}(\zeta ; q) & =\left(\zeta^{2}-p^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{\not p \rho_{A}\left(s, \zeta^{2}\right)+\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s+i \epsilon\right)\left(\zeta^{2}-s\right)}
\end{aligned}
$$

- In the self-energy loop of the DSEs:
- potentially 6 unbounded integration variables (ρ and σ)
- various number of Feynman parameters
\rightarrow many integration parameters needs to be rearranged

Change of Variable

- The Nakanishi representations yield:

$$
\begin{aligned}
\Pi_{R}\left(\zeta, \zeta_{p} ; q\right) & =\left(\zeta_{p}^{2}-q^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{\rho_{\gamma}\left(s, \zeta^{2}\right)}{\left(q^{2}-s+i \epsilon\right)\left(\zeta_{p}^{2}-s\right)} \\
\Sigma_{R}(\zeta ; q) & =\left(\zeta^{2}-p^{2}\right) \int_{s_{t h}^{p}}^{\infty} \mathrm{d} s \frac{p \rho_{A}\left(s, \zeta^{2}\right)+\rho_{B}\left(s, \zeta^{2}\right)}{\left(p^{2}-s+i \epsilon\right)\left(\zeta^{2}-s\right)}
\end{aligned}
$$

- In the self-energy loop of the DSEs:
- potentially 6 unbounded integration variables (ρ and σ)
- various number of Feynman parameters
\rightarrow many integration parameters needs to be rearranged
- one needs to get the same denominator power
- achieve through approriate change of variable and integration on specific variables
- or obtained through integration by parts

An example of result

$$
\begin{aligned}
\Theta\left(y-s_{t h}\right) \rho_{A}(y, \zeta)= & \frac{3}{(4 \pi)^{2}} e_{R}^{2} \lim _{\Lambda \rightarrow \infty} Z_{1}(\zeta, \Lambda) \int_{0}^{\infty} d \omega \bar{\sigma}_{\gamma}\left(\omega, \zeta, \zeta_{\rho}, \Lambda\right) \int_{0}^{1} d \xi \int_{0}^{\infty} d s^{\prime} \\
& \left\{\overline { \sigma } _ { V } (s ^ { \prime } , \zeta , s _ { t h } ^ { \prime } , \Lambda) \left[\xi \Theta\left(y \xi(1-\xi)-\xi \omega-(1-\xi) s^{\prime}\right)\right.\right. \\
& \left.-\int_{0}^{1-\xi} d t \Theta\left(y t(1-t)-\xi \omega-t s^{\prime}\right)\right]+\bar{\sigma} V\left(s^{\prime}, \zeta, s_{t, t}^{\prime}, \Lambda\right) \\
& \times\left[\int_{s_{t, p}}^{\infty} d s \rho_{A}(s, \zeta, \Lambda) e_{A V}^{(0)}\left(\zeta, \omega, s, s^{\prime}, \xi, y\right)\right. \\
& \left.+y \int_{s_{t, t}}^{\infty} d s \rho_{A}(s, \zeta, \Lambda) e_{A V}^{(1)}\left(\zeta, \omega, s, s^{\prime}, \xi, y\right)\right] \\
& -y \bar{\sigma}\left(s^{\prime}, \zeta, s_{t h,}^{\prime}, \Lambda\right) \int_{0}^{1-\xi} d t \int_{0}^{1-\xi-t} d w \\
& \left.\times \int_{s_{s, t}}^{\infty} d s \rho_{B}(s, \zeta, \Lambda) \Delta^{\prime}\left[y-s+\frac{s \mathcal{A}_{4}(t, w)-\xi \omega-t s^{\prime}-w s}{\mathcal{A}_{4}(t, w)}\right]\right\}
\end{aligned}
$$

Recovering the 1-loop results I

Nakanishi weights

$$
\begin{aligned}
\Theta\left(y-s_{t h}\right) \rho_{A}^{(1)}(y, \zeta)= & -\frac{e_{R}^{2}}{2(4 \pi)^{2}} \frac{1}{\zeta_{P}^{2} y^{2}} \Theta\left(y-m^{2}\right)\left\{\Theta\left[\left[m+\zeta_{p}\right]^{2}-y\right]\left(y-m^{2}\right)^{3}\right. \\
& \left.+\Theta\left[y-\left[m+\zeta_{p}\right]^{2}\right]\left(y-m^{2}\right)^{3}\left[1-f\left(y, \zeta, \zeta_{p}^{2}\right)\right]\right\}, \\
f\left(y, \zeta^{2}, \zeta_{p}^{2}\right)= & \sqrt{1-\zeta_{P}^{2} \frac{2 y+2 m^{2}-\zeta_{p}^{2}}{\left(y-m^{2}\right)^{2}}\left[1+\zeta_{p}^{2} \frac{y+m^{2}-2 \zeta_{p}^{2}}{\left(y-m^{2}\right)^{2}}\right],} \\
\Theta\left(y-s_{t h}\right) \rho_{B}^{(1)}(y, \zeta)= & -\frac{3 e_{R}^{2}}{(4 \pi)^{2}} \Theta\left[y-\left[m+\zeta_{p}\right]^{2}\right] \frac{m}{y} \sqrt{\left[y-m^{2}-\zeta_{p}^{2}\right]^{2}-4 m^{2} \zeta_{p}^{2}} \\
\Theta\left(y-s_{t h}^{p}\right) \rho_{\gamma}^{(1)}(y, \zeta)= & -\frac{e_{R}^{2}}{3(2 \pi)^{2}} \Theta(y) \Theta\left(y-4 m^{2}\right)\left(1+2 \frac{m^{2}}{y}\right) \sqrt{1-4 \frac{m^{2}}{y}}
\end{aligned}
$$

- Expected behaviour for $\zeta_{p} \rightarrow 0$
- Expected behaviour for $y \rightarrow \infty$

Recovering the 1-loop results II

Källen-Lehmann weights

- The Källen-Lehmann weights behave as expected:
- rapid increase from threshold, reach maximum and slowly go to zero at infinity
- for fermions, IR divergences noticeable

Summary

Truncation of the gap equations

- Getting a workable and consistent truncation is not easy
- In particular, the bare vertex cannot be used in the photon case
- We learn a great deal on the impact of the symmetries on the interaction
- In the end, the symmetries leave us no choice but working with the Qin vertex as a "minimal" vertex

Minkowski space computation

- From the Qin vertex, Källen-Lehmann and Nakanishi representations allows us to handle the momenta algebraically
- We obtained 6 coupled and non-linear equations for six unknown functions
- We checked that we recover expected one-loop results

Perspectives

Short term studies

Scheme dependence

- Check whether things hold in the standard on-shell schemes
- Modification should be of a finite amount despite mixing \mathcal{A} and \mathcal{B}

Gauge dependence

- Open question: does the framework hold in the lightcone gauge ?
- Algebraic momentum dependence: we can expect that yes \rightarrow good news to compute lightcone quantities (PDFs, GPDs, ...)

Numerical effort

- Is the framework workable numerically speaking?
- All final integral are finite, but it does not mean the system will converge toward a solution

Toward bound-states

- Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K

Toward bound-states

- Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K
- My guess: it will not work.

Toward bound-states

- Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K
- My guess: it will not work.
- Necessary to develop a kernel consistent with Γ_{Q}^{μ}
D. Binosi et al., PRD 93 (2016) 9, 096010
S.-X. Qin and C.D. Roberts, arXiv:2009.13637

Toward bound-states

- Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K
- My guess: it will not work.
- Necessary to develop a kernel consistent with Γ_{Q}^{μ}
D. Binosi et al., PRD 93 (2016) 9, 096010
S.-X. Qin and C.D. Roberts, arXiv:2009.13637

Once again, the symmetries will dictate the structure of the kernel \rightarrow this needs to be worked out in our case

Extension to QCD

A speculative slide

Modification in QCD

- KL representation not proved but compatible with lattice results
D. Binosi and R.-A. Tripolt, PLB 801 (2020) 135171
- Nakanishi \rightarrow pQCD working at large p, so representation valid with modification of the singularities (e.g. complex conjugate poles)?
- WTI are replaced by STI. Non-abelian BC vertex available (quarks-gluon and 3-gluons cases).

> A.C. Aguilar et al., PRD 98 (2018) 1, 014002
> A.C. Aguilar et al., PRD $99(2019)$ 3, 034026
> A.C. Aguilar et al., Phys.Rev.D $99(2019) 9,094010$

- Up to my knowledge, no equivalent of the tWTIs have been derived

Extension to QCD
 A speculative slide

Modification in QCD

- KL representation not proved but compatible with lattice results
D. Binosi and R.-A. Tripolt, PLB 801 (2020) 135171
- Nakanishi \rightarrow pQCD working at large p, so representation valid with modification of the singularities (e.g. complex conjugate poles)?
- WTI are replaced by STI. Non-abelian BC vertex available (quarks-gluon and 3-gluons cases).

> A.C. Aguilar et al., PRD 98 (2018) 1, 014002
> A.C. Aguilar et al., PRD 99 (2019) 3, 034026
> A.C. Aguilar et al., Phys.Rev.D $99(2019) 9,094010$

- Up to my knowledge, no equivalent of the tWTIs have been derived

Extension to QCD relies on progresses on the gauge constraints on the 3 -point and 4 -point functions entering the gap equations.

Thank you for your attention

