Toward a solution of the gap equation in Minkowski space

Cédric Mezrag

CEA Saclay, Irfu DPhN & INFN sezione di Roma

February 17th, 2021

In collaboration with Giovanni Salmè

Based on: Eur.Phys.J.C 81 (2021) 1, 34

Cédric Mezrag (Irfu-DPhN)

Gap Equation

- Rather technical talk as I was asked to speak specifically on our last paper
 - \rightarrow I try to make it as lively as possible
- For a review of application to observables, see *e.g.* P. Maris talk in December and topical review article on DSE-BSE
- I tried to come back on some points mentioned during the discussion following P. Maris talk (I could not attend to)

Introduction

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:

- anomalous magnetic moment of the electron (multi-loop pQED)
- structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:
 - bound states description

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:
 - bound states description
 - strong coupling regime (*e.g.* QCD in the infrared)

figure from Z.F. Cui et al., Chin.Phys.C 44 (2020) 8, 083102

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:
 - bound states description
 - strong coupling regime (*e.g.* QCD in the infrared)
 - dynamical mass generation

figure from A. Bashir *et al.*, Commun.Theor.Phys. 58 (2012) 79-134

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:
 - bound states description
 - strong coupling regime (*e.g.* QCD in the infrared)
 - dynamical mass generation
- Different approaches to non-perturbative physics
 - Lightfront Hamiltonian
 - ADS/QCD
 - Lattice QCD
 - Dyson-Schwinger/Bether Salpeter equations

- Perturbation theory: a powerful tool to describe scattering in QFT
 - anomalous magnetic moment of the electron (multi-loop pQED)
 - structure functions scaling violations (major pQCD result)
- *but* some phenomena escape a perturbative description:
 - bound states description
 - strong coupling regime (*e.g.* QCD in the infrared)
 - dynamical mass generation
- Different approaches to non-perturbative physics
 - Lightfront Hamiltonian
 - ADS/QCD
 - Lattice QCD
 - Dyson-Schwinger/Bether Salpeter equations

Dyson-Schwinger equations

cea

DSEs relate the N-point functions of a given QFT among each other.

Coupled to higher N-point functions \rightarrow infinite set of equations

Cédric Mezrag (Irfu-DPhN)

Gap Equation

Vertex and Bethe-Salpeter equations

• 3-point functions also obey their own DSEs:

- A - E - N

3

Vertex and Bethe-Salpeter equations

• 3-point functions also obey their own DSEs:

Higher point functions present poles at bound-states masses
 → residues yield the Bethe-Salpeter wave functions

Vertex and Bethe-Salpeter equations

• 3-point functions also obey their own DSEs:

Higher point functions present poles at bound-states masses
 → residues yield the Bethe-Salpeter wave functions

- DSE-BSE formalism provides a way to study bound states
- Approximations are required to close the system (truncations)

- Usually, DSE-BSE are solved numerically in Euclidean space
 - External momenta are continued in the complex plane
 - Can reveal itself numerically challenging
 - A direct access to lighfront quantities can be difficult

- Usually, DSE-BSE are solved numerically in Euclidean space
 - External momenta are continued in the complex plane
 - Can reveal itself numerically challenging
 - A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce

V. Sauli J. Phys. G30, 739 (2004) S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017) E. Solis *et al.*, Few Body Syst.60(3), 49 (2019) V. Sauli, aXiv:1909.03043

7/39

- 4 周 ト 4 ヨ ト 4 ヨ ト

- Usually, DSE-BSE are solved numerically in Euclidean space
 - External momenta are continued in the complex plane
 - Can reveal itself numerically challenging
 - A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce

V. Sauli J. Phys. G30, 739 (2004) S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017) E. Solis *et al.*, Few Body Syst.60(3), 49 (2019) V. Sauli, aXiv:1909.03043

More BSE studies have been performed but using very simple kernels

 K. Kusaka et al., Phys. Rev. D56, 5071 (1997)
 V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27, 1 (2006)
 T. Frederico et al., Phys. Rev. D89, 016010 (2014)
 V. Sauli Int. J. Theor. Phys.54(11), 4131 (2015)
 E. Ydrefors et al., Phys. Lett. B791, 276 (2019)
 T. Frederico et al., arXiv:1905.00703

7/39

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Usually, DSE-BSE are solved numerically in Euclidean space
 - External momenta are continued in the complex plane
 - Can reveal itself numerically challenging
 - A direct access to lighfront quantities can be difficult
- Attempts to solve the DSEs in Minkowski space remain scarce

V. Sauli J. Phys. G30, 739 (2004) S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017) E. Solis *et al.*, Few Body Syst.60(3), 49 (2019) V. Sauli, aXiv:1909.03043

• More BSE studies have been performed but using very simple kernels

K. Kusaka *et al.*, Phys. Rev. D56, 5071 (1997) V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27, 1 (2006) T. Frederico *et al.*, Phys. Rev. D89, 016010 (2014)

- V. Sauli Int. J. Theor. Phys.54(11), 4131 (2015)
- E. Ydrefors et al., Phys. Lett. B791, 276 (2019)
 - T. Frederico et al., arXiv:1905.00703

. . .

Our idea

Can we "export" to Minkowski space the theoretical progresses achieved in euclidean one?

Cédric Mezrag (Irfu-DPhN)

Gap Equation

Two-point functions in Minkowski space

- 3

Exploratory work: Abelian theory

• Abelian DSE are much simpler than QCD ones:

• Abelian theories presents interesting properties that can be exploited.

• Fermion Case:

$$iS_R^{-1}(p,\zeta^2) = p - m - \Sigma_R(p,\zeta^2)$$
$$\Sigma_R(p,\zeta^2) = p \mathcal{A}_R(p,\zeta^2) + \mathcal{B}_R(p,\zeta^2)$$

• Photon case in covariant gauges:

$$D_R^{\mu
u}(q,\zeta^2) = -irac{T^{\mu
u}(q)}{(q^2+i\epsilon)(1+\Pi_R(q^2,\zeta^2))} \ T^{\mu
u}(q) = \eta^{\mu
u} - (1-\xi)rac{q^\mu q^
u}{q^2}$$

Cédric Mezrag (Irfu-DPhN)

February 17th, 2021

Källen-Lehmann representation

• The Källen-Lehmann representation is a key property of the propagator:

$$S_{R}(p,\zeta^{2}) = i\Re_{S}\frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + i\int_{s_{th}}^{\infty}\frac{\not p\sigma_{v}(s,\zeta) + \sigma_{s}(s,\zeta)}{p^{2} - s + i\epsilon}$$
$$D_{R}^{\mu\nu}(q,\zeta) = -iT^{\mu\nu}(q)\left(\frac{\Re_{D}}{q^{2} + i\epsilon} + \int_{s_{th}}^{\infty}\frac{\sigma_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}\right)$$

with \mathcal{R}_S and \mathcal{R}_D the residues at the fermion and photon poles.

cea

Källen-Lehmann representation

• The Källen-Lehmann representation is a key property of the propagator:

$$S_{R}(p,\zeta^{2}) = i\Re_{S}\frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + i\int_{s_{th}}^{\infty} \frac{\not p\sigma_{v}(s,\zeta) + \sigma_{s}(s,\zeta)}{p^{2} - s + i\epsilon}$$
$$D_{R}^{\mu\nu}(q,\zeta) = -iT^{\mu\nu}(q)\left(\frac{\Re_{D}}{q^{2} + i\epsilon} + \int_{s_{th}^{p}}^{\infty} \frac{\sigma_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}\right)$$

with \Re_S and \Re_D the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
 - asymptotic states
 - complete set states

cea

Källen-Lehmann representation

• The Källen-Lehmann representation is a key property of the propagator:

$$S_{R}(p,\zeta^{2}) = i\Re_{S}\frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + i\int_{s_{th}}^{\infty} \frac{\not p\sigma_{v}(s,\zeta) + \sigma_{s}(s,\zeta)}{p^{2} - s + i\epsilon}$$
$$D_{R}^{\mu\nu}(q,\zeta) = -iT^{\mu\nu}(q)\left(\frac{\Re_{D}}{q^{2} + i\epsilon} + \int_{s_{th}^{p}}^{\infty} \frac{\sigma_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}\right)$$

with \mathcal{R}_S and \mathcal{R}_D the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
 - asymptotic states
 - complete set states
- Advantages: algebraic manipulation of the momenta

3 K K 3 K - 3

cea

Källen-Lehmann representation

• The Källen-Lehmann representation is a key property of the propagator:

$$S_{R}(p,\zeta^{2}) = i\Re_{S}\frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + i\int_{s_{th}}^{\infty} \frac{\not p\sigma_{v}(s,\zeta) + \sigma_{s}(s,\zeta)}{p^{2} - s + i\epsilon}$$
$$D_{R}^{\mu\nu}(q,\zeta) = -iT^{\mu\nu}(q)\left(\frac{\Re_{D}}{q^{2} + i\epsilon} + \int_{s_{th}^{p}}^{\infty} \frac{\sigma_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}\right)$$

with \Re_S and \Re_D the residues at the fermion and photon poles.

- It relies on non-perturbative arguments involving:
 - asymptotic states
 - complete set states
- Advantages: algebraic manipulation of the momenta

What about self energies?

Cédric Mezrag (Irfu-DPhN)

Gap Equation

February 17th, 2021 11/39

Introduction and definitions

 Nakinishi representation (also called Perturbative Integral Representation -PTIR-)

see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971

 Nakinishi representation (also called Perturbative Integral Representation -PTIR-)

see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971

• It relies graph theory (studies of graph having N external legs) and exploits Feynman trick

 Nakinishi representation (also called Perturbative Integral Representation -PTIR-)

see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971

- It relies graph theory (studies of graph having N external legs) and exploits Feynman trick
- It yields the following representations:

$$Z_{2}(\zeta)\Sigma(p,\Lambda) = \int_{0}^{\infty} [\mathrm{d}s]_{\Lambda} \frac{\not{p}\rho_{A}(s,\zeta^{2}) + \rho_{B}(s,\zeta^{2})}{p^{2} - s + i\epsilon}$$
$$Z_{3}(\zeta)\Pi(q,\Lambda) = \int_{0}^{\infty} [\mathrm{d}s]_{\Lambda} \frac{\rho_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}$$

allowing the algebraic manipulation of the momenta.

• Nakinishi representation (also called Perturbative Integral Representation -PTIR-)

see e.g, N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach 1971

- It relies graph theory (studies of graph having N external legs) and exploits Feynman trick
- It yields the following representations:

$$Z_{2}(\zeta)\Sigma(p,\Lambda) = \int_{0}^{\infty} [\mathrm{d}s]_{\Lambda} \frac{\not{p}\rho_{A}(s,\zeta^{2}) + \rho_{B}(s,\zeta^{2})}{p^{2} - s + i\epsilon}$$
$$Z_{3}(\zeta)\Pi(q,\Lambda) = \int_{0}^{\infty} [\mathrm{d}s]_{\Lambda} \frac{\rho_{\gamma}(s,\zeta^{2})}{q^{2} - s + i\epsilon}$$

allowing the algebraic manipulation of the momenta.

• Such a representation is proven to hold at all order of perturbation theory

Cédric Mezrag (Irfu-DPhN)

February 17th, 2021

Nakanishi representation II Advantages and drawback

Advantages

- $\bullet\,$ Crucially, the ρ are unique and independent of the momenta.
- Such relations can be generalised to higher *N*-point functions, such as the vertex function (N=3), the scattering amplitude (N=4)...

see seminar by P. Maris in December

$$\Gamma(k, P, \Lambda) = \int_{-1}^{1} [\mathrm{d}z]_{\Lambda} \int_{0}^{\infty} [\mathrm{d}\beta]_{\Lambda} \frac{\rho(z, \beta)}{\beta - \left(k + \frac{z}{2}P\right)^{2}}$$

Nakanishi representation II Advantages and drawback

Advantages

- Crucially, the ρ are **unique** and **independent** of the momenta.
- Such relations can be generalised to higher *N*-point functions, such as the vertex function (N=3), the scattering amplitude (N=4)...

see seminar by P. Maris in December

$$\Gamma(k, P, \Lambda) = \int_{-1}^{1} [\mathrm{d}z]_{\Lambda} \int_{0}^{\infty} [\mathrm{d}\beta]_{\Lambda} \frac{\rho(z, \beta)}{\beta - \left(k + \frac{z}{2}P\right)^{2}}$$

Drawback

- All order of perturbation theory \neq non-perturbatively \rightarrow weaker than the "Källen-Lehmann" proof (at least in Abelian case) However:
 - assume that the Nakanishi representation hold non-perturbatively
 - price to pay might be that ρ are not smooth functions

Nakanishi representation III Previous studies

• Previously used for the self-energy through direct computations

V. Sauli, J. Phys., 2004, G30, 739-758

- And also in the case of the vertex function
 - Using simple algebraic ρ functions

```
C. Mezrag et al., PLB 741 (2015) 190-196
N. Chouika et al., PLB 780 (2018) 287-293
```

```
. . .
```

attempts of direct calculations in Minkowski space

```
J. Carbonell et al., Eur. Phys. J., 2017, C77, 58
J. H. Alvarenga Nogueira et al., PRD 100, 2019, 016021
```

. . .

14 / 39

 or trying to solve the inverse "Nakanishi problem" through Bayesian techniques in euclidean space

F. Gao et al., PLB770 551-555 (2017)

We will look for a direct computation through the DSE

イロト イヨト イヨト

• Gauge Dependence : we will work in the Landau gauge

- Renormalisation Conditions
 - Standard on-shell scheme ($\zeta^2 = m^2$):

$$\begin{split} m\mathcal{A}_R(m^2,m^2) + \mathcal{B}_R(m^2,m^2) &= 0\\ \mathcal{A}_R(m^2,m^2) + 2m\left(m\frac{\partial\mathcal{A}_R}{\partial p^2}(m^2,m^2) + \frac{\partial\mathcal{B}}{\partial p^2}(m^2,m^2)\right) &= 0 \end{split}$$

mixes \mathcal{A}_R and $\mathcal{B}_R \rightarrow$ cumbersome for an exploratory study

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQの

- Renormalisation Conditions
 - Standard on-shell scheme ($\zeta^2 = m^2$):

$$m\mathcal{A}_{R}(m^{2},m^{2}) + \mathcal{B}_{R}(m^{2},m^{2}) = 0$$
$$\mathcal{A}_{R}(m^{2},m^{2}) + 2m\left(m\frac{\partial\mathcal{A}_{R}}{\partial p^{2}}(m^{2},m^{2}) + \frac{\partial\mathcal{B}}{\partial p^{2}}(m^{2},m^{2})\right) = 0$$

mixes \mathcal{A}_R and $\mathcal{B}_R \rightarrow$ cumbersome for an exploratory study • RI'/MOM scheme "on-shell" ($\zeta^2 = m^2$):

$$\mathcal{A}_R(m^2,m^2)=0 \qquad \mathcal{B}_R(m^2,m^2)=0$$

price to pay: the residue at the pole is not 1 anymore

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
 - Standard on-shell scheme ($\zeta^2 = m^2$):

$$m\mathcal{A}_{R}(m^{2},m^{2}) + \mathcal{B}_{R}(m^{2},m^{2}) = 0$$
$$\mathcal{A}_{R}(m^{2},m^{2}) + 2m\left(m\frac{\partial\mathcal{A}_{R}}{\partial p^{2}}(m^{2},m^{2}) + \frac{\partial\mathcal{B}}{\partial p^{2}}(m^{2},m^{2})\right) = 0$$

mixes \mathcal{A}_R and $\mathcal{B}_R \rightarrow$ cumbersome for an exploratory study • RI'/MOM scheme "on-shell" ($\zeta^2 = m^2$):

$$\mathcal{A}_R(m^2,m^2)=0 \qquad \mathcal{B}_R(m^2,m^2)=0$$

price to pay: the residue at the pole is not 1 anymore

• Photon case : standard $\Pi_R(\zeta_p^2, \zeta_p^2) = 0$ for ζ_p being a IR regulator
Gauge fixing and renormalisation conventions

- Gauge Dependence : we will work in the Landau gauge
- Renormalisation Conditions
 - Standard on-shell scheme ($\zeta^2 = m^2$):

$$m\mathcal{A}_{R}(m^{2},m^{2}) + \mathcal{B}_{R}(m^{2},m^{2}) = 0$$
$$\mathcal{A}_{R}(m^{2},m^{2}) + 2m\left(m\frac{\partial\mathcal{A}_{R}}{\partial p^{2}}(m^{2},m^{2}) + \frac{\partial\mathcal{B}}{\partial p^{2}}(m^{2},m^{2})\right) = 0$$

mixes \mathcal{A}_R and $\mathcal{B}_R \rightarrow$ cumbersome for an exploratory study $\mathbf{RI'}/MOM$ scheme "on-shell" ($\zeta^2 = m^2$):

$$\mathcal{A}_R(m^2,m^2)=0 \qquad \mathcal{B}_R(m^2,m^2)=0$$

price to pay: the residue at the pole is not 1 anymore

- ▶ Photon case : standard $\Pi_R(\zeta_p^2, \zeta_p^2) = 0$ for ζ_p being a IR regulator
- Renormalisation constant given in terms of Nakanishi weights:

$$Z_2(\zeta = m, \Lambda) = 1 + \int_{m^2}^{\infty} [\mathrm{d}s]_{\Lambda} \frac{\rho_A(s, \zeta)}{m^2 - s + i\epsilon}$$

• Exploit our various expressions for S_R (and $D_R^{\mu\nu}$)

$$S_{R}(p,\zeta^{2}) = \Re_{s} \frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + \int_{s_{th}}^{\infty} \frac{\not p \sigma_{v}(s,\zeta^{2}) + \sigma_{s}(s,\zeta^{2})}{p^{2} - s + i\epsilon}$$
$$= \frac{\not p \left(1 - \mathcal{A}_{R}(p^{2},\zeta^{2})\right) + m + \mathcal{B}_{R}(p^{2},\zeta^{2})}{p^{2} \left(1 - \mathcal{A}_{R}(p^{2},\zeta^{2})\right)^{2} - \left(m + \mathcal{B}_{R}(p^{2},\zeta^{2})\right)^{2}}$$

$$S_{R}(p,\zeta^{2}) = \Re_{s} \frac{\not p + m}{p^{2} - m^{2} + i\epsilon} + \int_{s_{th}}^{\infty} \frac{\not p \sigma_{v}(s,\zeta^{2}) + \sigma_{s}(s,\zeta^{2})}{p^{2} - s + i\epsilon}$$
$$= \frac{\not p \left(1 - \mathcal{A}_{R}(p^{2},\zeta^{2})\right) + m + \mathcal{B}_{R}(p^{2},\zeta^{2})}{p^{2} \left(1 - \mathcal{A}_{R}(p^{2},\zeta^{2})\right)^{2} - \left(m + \mathcal{B}_{R}(p^{2},\zeta^{2})\right)^{2}}$$

• Using the Sokhotski–Plemelj formula for $p^2 > m^2$

$$\sigma_{v}(p^{2},\zeta^{2}) = \frac{-1}{\pi} \Im\left(\frac{(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))}{p^{2}(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))^{2}-(m+\mathcal{B}_{R}(p^{2},\zeta^{2}))^{2}}\right)$$
$$\sigma_{s}(p^{2},\zeta^{2}) = \frac{-1}{\pi} \Im\left(\frac{m+\mathcal{B}_{R}(p^{2},\zeta^{2})}{p^{2}(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))^{2}-(m+\mathcal{B}_{R}(p^{2},\zeta^{2}))^{2}}\right)$$

Cédric Mezrag (Irfu-DPhN)

February 17th, 2021

• Using the Sokhotski–Plemelj formula for $p^2 > m^2$

$$\sigma_{v}(p^{2},\zeta^{2}) = \frac{-1}{\pi} \Im\left(\frac{(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))}{p^{2}(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))^{2}-(m+\mathcal{B}_{R}(p^{2},\zeta^{2}))^{2}}\right)$$

$$\sigma_{s}(p^{2},\zeta^{2}) = \frac{-1}{\pi} \Im\left(\frac{m+\mathcal{B}_{R}(p^{2},\zeta^{2})}{p^{2}(1-\mathcal{A}_{R}(p^{2},\zeta^{2}))^{2}-(m+\mathcal{B}_{R}(p^{2},\zeta^{2}))^{2}}\right)$$

• It yields the σ as (non-linear) functions of the ρ

$$\sigma_{v}(p^{2},\zeta^{2}) = F_{v}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$
$$\sigma_{s}(p^{2},\zeta^{2}) = F_{s}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$

- Exploit our various expressions for S_R (and $D_R^{\mu\nu}$)
- Using the Sokhotski–Plemelj formula for $p^2 > m^2$
- $\bullet\,$ It yields the σ as (non-linear) functions of the ρ

$$\sigma_{v}(p^{2},\zeta^{2}) = F_{v}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$
$$\sigma_{s}(p^{2},\zeta^{2}) = F_{s}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$

• This yields 3 equations in our system of 6 unknown $(\sigma_v, \sigma_s, \sigma_\gamma, \rho_A, \rho_B, \rho_\gamma)$

- Exploit our various expressions for S_R (and $D_R^{\mu\nu}$)
- Using the Sokhotski–Plemelj formula for $p^2 > m^2$
- $\bullet\,$ It yields the σ as (non-linear) functions of the ρ

$$\sigma_{v}(p^{2},\zeta^{2}) = F_{v}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$
$$\sigma_{s}(p^{2},\zeta^{2}) = F_{s}\left\{\rho_{A},\rho_{B},PV\left[\frac{\rho_{A}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right],PV\left[\frac{\rho_{B}(s,\zeta^{2})}{(p^{2}-s)(\zeta^{2}-s)}\right]\right\}$$

- This yields 3 equations in our system of 6 unknown $(\sigma_v, \sigma_s, \sigma_\gamma, \rho_A, \rho_B, \rho_\gamma)$
- 3 more are provided by the gap equations.

Abelian DSEs in Minkowski space In Search of Lost Vertex

→

Abelian Gap equations

$$\begin{split} \Sigma_R(\zeta;p) &= -iZ_1(\zeta,\Lambda) \ e_R^2 \ \int_{\Lambda} \frac{\mathrm{d}^4 k}{(2\pi)^4} \ \gamma^{\beta} \ S_R(\zeta,k) \\ &\times \left\{ D_{\beta\alpha}^R(\zeta,p-k) \ \Gamma_R^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^R(\zeta,p-k) \ \Gamma_R^{\alpha}(\zeta;k,p) \right]_{p^2=\zeta^2} \right\} \ . \\ \Pi_R(\zeta;q) &= -iZ_1(\zeta,\Lambda) \ \frac{4}{3} \ e_R^2 \int_{\Lambda} \frac{d^4 k}{(2\pi)^4} \ \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_R(\zeta,k) \\ &\times \left\{ \frac{1}{q^2} \Gamma_R^{\nu}(\zeta,k,q) \ S_R(\zeta,k-q) - \frac{1}{\zeta_p^2} \left[\Gamma_R^{\nu}(\zeta,k,q) \ S_R(\zeta,k-q) \right]_{q^2=\zeta_p^2} \right\} \Big] \end{split}$$

Cédric Mezrag (Irfu-DPhN)

February 17th, 2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

Abelian Gap equations

$$\begin{split} \Sigma_R(\zeta;p) &= -iZ_1(\zeta,\Lambda) \ e_R^2 \ \int_{\Lambda} \frac{\mathrm{d}^4 k}{(2\pi)^4} \ \gamma^{\beta} \ S_R(\zeta,k) \\ &\times \left\{ D_{\beta\alpha}^R(\zeta,p-k) \ \Gamma_R^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^R(\zeta,p-k) \ \Gamma_R^{\alpha}(\zeta;k,p) \right]_{p^2 = \zeta^2} \right\} \ . \\ \Pi_R(\zeta;q) &= -iZ_1(\zeta,\Lambda) \ \frac{4}{3} \ e_R^2 \int_{\Lambda} \frac{d^4 k}{(2\pi)^4} \ \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_R(\zeta,k) \\ &\times \left\{ \frac{1}{q^2} \Gamma_R^{\nu}(\zeta,k,q) \ S_R(\zeta,k-q) - \frac{1}{\zeta_p^2} \left[\Gamma_R^{\nu}(\zeta,k,q) \ S_R(\zeta,k-q) \right]_{q^2 = \zeta_p^2} \right\} \Big] \end{split}$$

The last thing to get under control is the vertex

Cédric Mezrag (Irfu-DPhN)

Gap Equation

February 17th, 2021 18 / 39

Tree-level vertex approximation

• First thing one could look at: neglecting higher point functions:

- $\bullet\,$ Independent of the momenta $\to\,$ all momenta degrees of freedom of the self-energy can be algebraically manipulated
- It works well for the fermion self-energy

Tree-level vertex approximation

• First thing one could look at: neglecting higher point functions:

- $\bullet\,$ Independent of the momenta $\to\,$ all momenta degrees of freedom of the self-energy can be algebraically manipulated
- It works well for the fermion self-energy

Major issues

- The vacuum polarisation tensor $\Pi^{\mu\nu}$ is *not* transverse anymore
- Quadratic divergences (proportional to $\eta^{\mu\nu})$ do not vanish as they should

• Ward-Takahashi Identities are the consequence of current conservation

→ 3 → 3

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$(k_{2} - k_{1})_{\mu} \Gamma_{R}^{\mu}(k_{2}, k_{1}, \zeta) = iS_{R}^{-1}(k_{2}, \zeta) - iS_{R}^{-1}(k_{1}, \zeta)$$

= $\underbrace{(k_{2} - k_{1})}_{\text{tree-level vertex}} - (k_{2}\mathcal{A}_{R}(k_{2}) - k_{1}\mathcal{A}_{R}(k_{1})) - (\mathcal{B}_{R}(k_{2}) - \mathcal{B}_{R}(k_{1}))$

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$(k_{2} - k_{1})_{\mu} \Gamma_{R}^{\mu}(k_{2}, k_{1}, \zeta) = iS_{R}^{-1}(k_{2}, \zeta) - iS_{R}^{-1}(k_{1}, \zeta)$$

= $\underbrace{(k_{2} - k_{1})}_{\text{tree-level vertex}} - (k_{2}A_{R}(k_{2}) - k_{1}A_{R}(k_{1})) - (\mathcal{B}_{R}(k_{2}) - \mathcal{B}_{R}(k_{1}))$

A tree level vertex violates the WTI ightarrow not suitable for handling the photon

- Ward-Takahashi Identities are the consequence of current conservation
- They relates some N-point functions with lower N ones.
- In the case of the three-point function, one has:

$$(k_{2} - k_{1})_{\mu} \Gamma_{R}^{\mu}(k_{2}, k_{1}, \zeta) = iS_{R}^{-1}(k_{2}, \zeta) - iS_{R}^{-1}(k_{1}, \zeta)$$

= $\underbrace{(k_{2} - k_{1})}_{\text{tree-level vertex}} - (k_{2}A_{R}(k_{2}) - k_{1}A_{R}(k_{1})) - (\mathcal{B}_{R}(k_{2}) - \mathcal{B}_{R}(k_{1}))$

A tree level vertex violates the WTI ightarrow not suitable for handling the photon

Need to build a vertex fulfilling all the required symmetry properties

Ball-Chiu vertex I Exploiting WTI

• Instead of using the DSE to build the vertex, use directly the WTI:

$$(k_2 - k_1)_{\mu} \Gamma^{\mu}_R(k_2, k_1, \zeta) = i S_R^{-1}(k_2, \zeta) - i S_R^{-1}(k_1, \zeta)$$

 \rightarrow build the vertex from the propagator instead of the scattering kernel

▶ < ∃ >

3

Ball-Chiu vertex I Exploiting WTI

• Instead of using the DSE to build the vertex, use directly the WTI:

$$(k_2 - k_1)_{\mu} \Gamma^{\mu}_R(k_2, k_1, \zeta) = i S_R^{-1}(k_2, \zeta) - i S_R^{-1}(k_1, \zeta)$$

 \rightarrow build the vertex from the propagator instead of the scattering kernel \bullet The idea behind the use of the Ball-Chiu vertex:

$$\Gamma_{R}^{\mu}(k_{2},k_{1},\zeta) = \Gamma_{BC}^{\mu}(k_{2},k_{1},\zeta) + \Gamma_{T}^{\mu}(k_{2},k_{1},\zeta)$$
$$= \underbrace{\sum_{i=1}^{4} \lambda_{i}^{\mu}(k_{2},k_{1})F_{i}(k_{2},k_{1},\zeta)}_{=1} + \sum_{j=1}^{8} \tau_{j}^{\mu}(k_{2},k_{1})F_{j}^{T}(k_{2},k_{1},\zeta)$$

Fully determined by the WTI

J. Ball and T.-W. Chiu, PRD 22 (1980) 2550

Ball-Chiu vertex I Exploiting WTI

• Instead of using the DSE to build the vertex, use directly the WTI:

$$(k_2 - k_1)_{\mu} \Gamma^{\mu}_R(k_2, k_1, \zeta) = i S_R^{-1}(k_2, \zeta) - i S_R^{-1}(k_1, \zeta)$$

 \rightarrow build the vertex from the propagator instead of the scattering kernel \bullet The idea behind the use of the Ball-Chiu vertex:

$$\Gamma_{R}^{\mu}(k_{2},k_{1},\zeta) = \Gamma_{BC}^{\mu}(k_{2},k_{1},\zeta) + \Gamma_{T}^{\mu}(k_{2},k_{1},\zeta)$$

$$= \sum_{i=1}^{4} \lambda_{i}^{\mu}(k_{2},k_{1})F_{i}(k_{2},k_{1},\zeta) + \sum_{j=1}^{8} \tau_{j}^{\mu}(k_{2},k_{1},\zeta)$$
Fully determined by the WTI

Fully determined by the WTI

Ball-Chiu approximation:
$$\Gamma^{\mu}_{R}(k_{2}, k_{1}, \zeta) = \Gamma^{\mu}_{BC}(k_{2}, k_{1}, \zeta)$$

Cédric Mezrag (Irfu-DPhN)

J. Ball and T.-W. Chiu, PRD 22 (1980) 2550

Ball-Chiu Vertex II

Obtaining a closed system

• Detailed structure of the BC vertex:

$$\begin{split} \lambda_{1}^{\mu} &= \frac{\gamma^{\mu}}{2} \quad \rightarrow \quad F_{1}(k_{2},k_{1},\zeta) = 2 - \mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2}) \\ \lambda_{2}^{\mu} &= -\frac{\not{k}_{1} + \not{k}_{2}}{2}(k_{1} + k_{2})^{\mu} \quad \rightarrow \quad F_{2}(k_{2},k_{1},\zeta) = \frac{\mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{3}^{\mu} &= -(k_{2} + k_{1})^{\mu} \quad \rightarrow \quad F_{3}(k_{2},k_{1},\zeta) = \frac{\mathcal{B}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{B}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{4}^{\mu} &= (k_{1} + k_{2})_{\nu}\sigma^{\mu\nu} \quad \rightarrow \quad F_{4}(k_{2},k_{1},\zeta) = 0 \end{split}$$

Ball-Chiu Vertex II

Obtaining a closed system

• Detailed structure of the BC vertex:

$$\begin{split} \lambda_{1}^{\mu} &= \frac{\gamma^{\mu}}{2} \quad \rightarrow \quad F_{1}(k_{2},k_{1},\zeta) = 2 - \mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2}) \\ \lambda_{2}^{\mu} &= -\frac{\not{k}_{1} + \not{k}_{2}}{2}(k_{1} + k_{2})^{\mu} \quad \rightarrow \quad F_{2}(k_{2},k_{1},\zeta) = \frac{\mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{3}^{\mu} &= -(k_{2} + k_{1})^{\mu} \quad \rightarrow \quad F_{3}(k_{2},k_{1},\zeta) = \frac{\mathcal{B}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{B}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{4}^{\mu} &= (k_{1} + k_{2})_{\nu}\sigma^{\mu\nu} \quad \rightarrow \quad F_{4}(k_{2},k_{1},\zeta) = 0 \end{split}$$

• Recalling the Nakanishi representation:

$$\mathcal{A}_{R}(p^{2},\zeta^{2}) = (\zeta^{2} - p^{2}) \int_{0}^{\infty} \mathrm{d}s \frac{\rho_{A}(s,\zeta^{2})}{(p^{2} - s + i\epsilon)(\zeta^{2} - s)}$$

→ 3 → 3

Ball-Chiu Vertex II

Obtaining a closed system

• Detailed structure of the BC vertex:

$$\begin{split} \lambda_{1}^{\mu} &= \frac{\gamma^{\mu}}{2} \quad \rightarrow \quad F_{1}(k_{2},k_{1},\zeta) = 2 - \mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2}) \\ \lambda_{2}^{\mu} &= -\frac{\not{k}_{1} + \not{k}_{2}}{2}(k_{1} + k_{2})^{\mu} \quad \rightarrow \quad F_{2}(k_{2},k_{1},\zeta) = \frac{\mathcal{A}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{A}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{3}^{\mu} &= -(k_{2} + k_{1})^{\mu} \quad \rightarrow \quad F_{3}(k_{2},k_{1},\zeta) = \frac{\mathcal{B}_{R}(k_{2}^{2},\zeta^{2}) - \mathcal{B}_{R}(k_{1}^{2},\zeta^{2})}{k_{2}^{2} - k_{1}^{2}} \\ \lambda_{4}^{\mu} &= (k_{1} + k_{2})_{\nu}\sigma^{\mu\nu} \quad \rightarrow \quad F_{4}(k_{2},k_{1},\zeta) = 0 \end{split}$$

• Recalling the Nakanishi representation:

$$\mathcal{A}_{R}(p^{2},\zeta^{2}) = (\zeta^{2} - p^{2}) \int_{0}^{\infty} \mathrm{d}s \frac{\rho_{A}(s,\zeta^{2})}{(p^{2} - s + i\epsilon)(\zeta^{2} - s)}$$

we obtain a vertex which

- by construction fulfil the WTI $\rightarrow \Pi_R^{\mu\nu}$ is transverse and finite
- depends **only** on the fermion self energy ightarrow the system is closed
- allow algebraic manipulation of the momenta degrees of freedom

Ball-Chiu Vertex III

Renormalisation

$$\begin{aligned} \Pi_{R}(\zeta,\zeta_{p};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma_{BC}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{p}^{2}} \left[\Gamma_{BC}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{p}^{2}} \right\} \Big] \\ \Sigma_{R}(\zeta;p) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{BC}^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{BC}^{\alpha}(\zeta;k,p) \right]_{p^{2}=\zeta^{2}} \right\} \end{aligned}$$

23 / 39

cea

Ball-Chiu Vertex III

Renormalisation

$$\begin{aligned} \Pi_{R}(\zeta,\zeta_{p};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma_{BC}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{p}^{2}} \left[\Gamma_{BC}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{p}^{2}} \right\} \Big] \\ \mathbf{\Sigma}_{R}(\zeta;p) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{BC}^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{BC}^{\alpha}(\zeta;k,p) \right]_{p^{2}=\zeta^{2}} \right\} \end{aligned}$$

 $\Sigma_R(\zeta; p)$ becomes logarithmically divergent !

23 / 39

イロト 不得 とくき とくき とうせい

Cez

Ball-Chiu Vertex III

Renormalisation

$$\begin{aligned} \Pi_{R}(\zeta,\zeta_{\rho};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma^{\nu}_{BC}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{\rho}^{2}} \left[\Gamma^{\nu}_{BC}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{\rho}^{2}} \right\} \Big] \\ \mathbf{\Sigma}_{R}(\zeta;p) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D^{R}_{\beta\alpha}(\zeta,p-k) \; \Gamma^{\alpha}_{BC}(\zeta;k,p) - \left[D^{R}_{\beta\alpha}(\zeta,p-k) \; \Gamma^{\alpha}_{BC}(\zeta;k,p) \right]_{p^{2}=\zeta^{2}} \right\} \end{aligned}$$

 $\Sigma_R(\zeta; p)$ becomes logarithmically divergent !

Where do these new singularities come from?

$$F_1(k, p, \zeta) = 2 - \mathcal{A}_R(k^2, \zeta^2) - \underbrace{\mathcal{A}_R(p^2, \zeta^2)}_{\rightarrow 0 \text{ when } p^2 \rightarrow \zeta^2} \qquad \begin{array}{l} \rightarrow \text{ some logarithmic singularities} \\ \text{ are not subtracted by our renormalisation procedure} \end{array}$$

Cédric Mezrag (Irfu-DPhN)

Gap Equation

23 / 39

Cez

Is this a problem with our renormalisation condition A_R(ζ², ζ²) = 0?
 → no, if A_R(ζ², ζ²) ≠ 0 the singularities do not compensate

- Is this a problem with our renormalisation condition $\mathcal{A}_R(\zeta^2, \zeta^2) = 0$? \rightarrow no, if $\mathcal{A}_R(\zeta^2, \zeta^2) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation

D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

イロト 不得下 イヨト イヨト 二日

- Is this a problem with our renormalisation condition $\mathcal{A}_R(\zeta^2, \zeta^2) = 0$? \rightarrow no, if $\mathcal{A}_R(\zeta^2, \zeta^2) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation

D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

• This issue can be fixed using Γ^{μ}_{T}

$$\Gamma^{\mu}_{PC}(\zeta;k,p) = \Gamma^{\mu}_{BC}(\zeta;k,p) + \tau^{\mu}_{6}F^{T}_{6;PC}(k^{2},p^{2},\zeta^{2})$$

- Is this a problem with our renormalisation condition $\mathcal{A}_R(\zeta^2, \zeta^2) = 0$? \rightarrow no, if $\mathcal{A}_R(\zeta^2, \zeta^2) \neq 0$ the singularities do not compensate
- The problem is actually known since the work of M. Pennington and D. Curtis \rightarrow the BC vertex is inconsistent with multiplicative renormalisation

D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

• This issue can be fixed using Γ^{μ}_{T}

$$\Gamma^{\mu}_{PC}(\zeta;k,p) = \Gamma^{\mu}_{BC}(\zeta;k,p) + \tau^{\mu}_{6}F^{T}_{6;PC}(k^{2},p^{2},\zeta^{2})$$

• Solution to the issue is not unique \rightarrow constraints on the purely transverse components to fulfil multiplicative renormalisation A. Bashir et al., PRC 85, 045205 (2012)

• Lesser known transverse WTIs (q = k - p, t = k + p):

$$\begin{aligned} q_{\mu}\Gamma_{\nu}(k,p) - q_{\nu}\Gamma_{\mu}(k,p) = & S^{-1}(p)\sigma_{\mu\nu} + \sigma_{\mu\nu}S^{-1}(k) \\ &+ 2im\Gamma_{\mu\nu}(k,p) + t_{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma_{\rho}^{A}(k,p) + A_{\mu\nu}^{V}(k,p) \\ q_{\mu}\Gamma_{\nu}^{A}(k,p) - q_{\nu}\Gamma_{\mu}^{A}(k,p) = & S^{-1}(p)\gamma_{5}\sigma_{\mu\nu} + \gamma_{5}\sigma_{\mu\nu}S^{-1}(k) \\ &+ t^{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{\rho}(k,p) + V_{\mu\nu}^{A}(k,p) \end{aligned}$$

Y. Takahashi, 1985, Print-85-0421 (Alberta) K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997) H.-X. He, arXiv:hep-th/0202013 H.-X. He, Commun. Theor. Phys.46, 109 (2006) H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007) S.-X. Qin *et al.*, Phys.Lett.B 722 (2013) 384-388

• Lesser known transverse WTIs (q = k - p, t = k + p):

$$\begin{aligned} q_{\mu}\Gamma_{\nu}(k,p) - q_{\nu}\Gamma_{\mu}(k,p) &= S^{-1}(p)\sigma_{\mu\nu} + \sigma_{\mu\nu}S^{-1}(k) \\ &+ 2im\Gamma_{\mu\nu}(k,p) + t_{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma_{\rho}^{A}(k,p) + A_{\mu\nu}^{V}(k,p) \\ q_{\mu}\Gamma_{\nu}^{A}(k,p) - q_{\nu}\Gamma_{\mu}^{A}(k,p) &= S^{-1}(p)\gamma_{5}\sigma_{\mu\nu} + \gamma_{5}\sigma_{\mu\nu}S^{-1}(k) \\ &+ t^{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{\rho}(k,p) + V_{\mu\nu}^{A}(k,p) \end{aligned}$$

Y. Takahashi, 1985, Print-85-0421 (Alberta) K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997) H.-X. He, arXiv:hep-th/0202013 H.-X. He, Commun. Theor. Phys.46, 109 (2006) H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007) S.-X. Qin *et al.*, Phys.Lett.B 722 (2013) 384-388

- Some comments:
 - Take advantage of the curl of the vertex $(\nabla \times \Gamma)$

• Lesser known transverse WTIs (q = k - p, t = k + p):

$$\begin{aligned} q_{\mu}\Gamma_{\nu}(k,p) - q_{\nu}\Gamma_{\mu}(k,p) &= S^{-1}(p)\sigma_{\mu\nu} + \sigma_{\mu\nu}S^{-1}(k) \\ &+ 2im\Gamma_{\mu\nu}(k,p) + t_{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma_{\rho}^{A}(k,p) + A_{\mu\nu}^{V}(k,p) \\ q_{\mu}\Gamma_{\nu}^{A}(k,p) - q_{\nu}\Gamma_{\mu}^{A}(k,p) &= S^{-1}(p)\gamma_{5}\sigma_{\mu\nu} + \gamma_{5}\sigma_{\mu\nu}S^{-1}(k) \\ &+ t^{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{\rho}(k,p) + V_{\mu\nu}^{A}(k,p) \end{aligned}$$

Y. Takahashi, 1985, Print-85-0421 (Alberta) K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997) H.-X. He, arXiv:hep-th/0202013 H.-X. He, Commun. Theor. Phys.46, 109 (2006) H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007) S.-X. Qin *et al.*, Phys.Lett.B 722 (2013) 384-388

- Some comments:
 - Take advantage of the curl of the vertex $(\nabla \times \Gamma)$
 - Coupled equations between vector and axial-vector vertices

• Lesser known transverse WTIs (q = k - p, t = k + p):

$$\begin{aligned} q_{\mu}\Gamma_{\nu}(k,p) - q_{\nu}\Gamma_{\mu}(k,p) = & S^{-1}(p)\sigma_{\mu\nu} + \sigma_{\mu\nu}S^{-1}(k) \\ & + 2im\Gamma_{\mu\nu}(k,p) + t_{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma_{\rho}^{A}(k,p) + A_{\mu\nu}^{V}(k,p) \\ q_{\mu}\Gamma_{\nu}^{A}(k,p) - q_{\nu}\Gamma_{\mu}^{A}(k,p) = & S^{-1}(p)\gamma_{5}\sigma_{\mu\nu} + \gamma_{5}\sigma_{\mu\nu}S^{-1}(k) \\ & + t^{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{\rho}(k,p) + V_{\mu\nu}^{A}(k,p) \end{aligned}$$

Y. Takahashi, 1985, Print-85-0421 (Alberta) K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997) H.-X. He, arXiv:hep-th/0202013 H.-X. He, Commun. Theor. Phys.46, 109 (2006) H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007) S.-X. Qin *et al.*, Phys.Lett.B 722 (2013) 384-388

- Some comments:
 - Take advantage of the curl of the vertex $(\nabla \times \Gamma)$
 - Coupled equations between vector and axial-vector vertices
 - Involve higher-point functions $\Gamma_{\mu\nu}$, $A^V_{\mu\nu}$ and $V^A_{\mu\nu}$

• Lesser known transverse WTIs (q = k - p, t = k + p):

$$\begin{aligned} q_{\mu}\Gamma_{\nu}(k,p) - q_{\nu}\Gamma_{\mu}(k,p) = & S^{-1}(p)\sigma_{\mu\nu} + \sigma_{\mu\nu}S^{-1}(k) \\ & + 2im\Gamma_{\mu\nu}(k,p) + t_{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{A}_{\rho}(k,p) + A^{V}_{\mu\nu}(k,p) \\ q_{\mu}\Gamma^{A}_{\nu}(k,p) - q_{\nu}\Gamma^{A}_{\mu}(k,p) = & S^{-1}(p)\gamma_{5}\sigma_{\mu\nu} + \gamma_{5}\sigma_{\mu\nu}S^{-1}(k) \\ & + t^{\lambda}\epsilon_{\lambda\mu\nu\rho}\Gamma^{\rho}(k,p) + V^{A}_{\mu\nu}(k,p) \end{aligned}$$

Y. Takahashi, 1985, Print-85-0421 (Alberta) K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997) H.-X. He, arXiv:hep-th/0202013 H.-X. He, Commun. Theor. Phys.46, 109 (2006)
H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007)
S.-X. Qin *et al.*, Phys.Lett.B 722 (2013) 384-388

Some comments:

- Take advantage of the curl of the vertex ($\nabla \times \Gamma$)
- Coupled equations between vector and axial-vector vertices
- Involve higher-point functions $\Gamma_{\mu\nu}$, $A^V_{\mu\nu}$ and $V^A_{\mu\nu}$
- ▶ Fully constrain the vertex in terms of the self energy for 1+1 QED

K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)

The Qin vertex I Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ^T_μ relating it to higher N-point function
 - ▶ for $j \in (1, 2, 4, 6, 7)$, F_i^T solely depends on higher *N*-point functions
 - ▶ for $j \in (3, 5, 8)$, F_i^T depends also on the fermion self-energy

S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

The Qin vertex I Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ^T_μ relating it to higher N-point function
 - ▶ for $j \in (1, 2, 4, 6, 7)$, F_i^T solely depends on higher *N*-point functions
 - ▶ for $j \in (3, 5, 8)$, F_i^T depends also on the fermion self-energy

S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

• Neglecting higher *N*-point functions, the Qin *et al.* truncation yields:

$$F_{3}^{T}(k,p) = -\frac{\mathcal{A}_{R}(k^{2}) - \mathcal{A}_{R}(p^{2})}{2(k^{2} - p^{2})} \qquad F_{8}^{T}(k,p) = \frac{\mathcal{A}_{R}(k^{2}) - \mathcal{A}_{R}(p^{2})}{(k^{2} - p^{2})} \\F_{5}^{T}(k,p) = \frac{\mathcal{B}_{R}(k^{2}) - \mathcal{B}_{R}(p^{2})}{(k^{2} - p^{2})} \qquad F_{j}^{T}(k,p) = 0 \quad \text{for } j \neq (3,5,8)$$
The Qin vertex I Definition

- In QED 3+1 the tWTI fully constrain the transverse vertex Γ^T_μ relating it to higher N-point function
 - ▶ for $j \in (1, 2, 4, 6, 7)$, F_j^T solely depends on higher *N*-point functions
 - ▶ for $j \in (3, 5, 8)$, F_i^T depends also on the fermion self-energy

S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

• Neglecting higher *N*-point functions, the Qin *et al.* truncation yields:

$$F_{3}^{T}(k,p) = -\frac{\mathcal{A}_{R}(k^{2}) - \mathcal{A}_{R}(p^{2})}{2(k^{2} - p^{2})} \qquad F_{8}^{T}(k,p) = \frac{\mathcal{A}_{R}(k^{2}) - \mathcal{A}_{R}(p^{2})}{(k^{2} - p^{2})}$$
$$F_{5}^{T}(k,p) = \frac{\mathcal{B}_{R}(k^{2}) - \mathcal{B}_{R}(p^{2})}{(k^{2} - p^{2})} \qquad F_{j}^{T}(k,p) = 0 \quad \text{for } j \neq (3,5,8)$$

This is *not* a standard vertex truncation:

- it does not involve any "graph" discussion (ladder, cross-ladder, ...)
- it purely relies on symmetry considerations

Gap Equation

February 17th, 2021 26 / 39

• Impact of the Qin vertex :

- ► $F_3^T(k, p)$ and $F_8^T(k, p)$ together cure the BC vertex \rightarrow we get both Σ_R and Π_R finite !
- $F_5^T(k, p)$ is not considered here \rightarrow it might create troubles

A. Bashir et al., PRC 85, 045205 (2012)

- Impact of the Qin vertex :
 - ► $F_3^T(k, p)$ and $F_8^T(k, p)$ together cure the BC vertex \rightarrow we get both Σ_R and Π_R finite !
 - $F_5^T(k, p)$ is not considered here \rightarrow it might create troubles

A. Bashir et al., PRC 85, 045205 (2012)

- Summarising, on the 12 independent structures, we get:
 - 3 are exactly and purely given in terms of Σ_R
 - 1 is exactly zero
 - 3 are approximately given in terms of Σ_R only
 - 5 are neglected

- Impact of the Qin vertex :
 - ► $F_3^T(k, p)$ and $F_8^T(k, p)$ together cure the BC vertex \rightarrow we get both Σ_R and Π_R finite !
 - $F_5^T(k, p)$ is not considered here \rightarrow it might create troubles

A. Bashir et al., PRC 85, 045205 (2012)

- Summarising, on the 12 independent structures, we get:
 - 3 are exactly and purely given in terms of Σ_R
 - 1 is exactly zero
 - 3 are approximately given in terms of Σ_R only
 - 5 are neglected
- The Qin vertex is a long way from the tree-level one
- ullet The symmetries are merciless ightarrow they determine the truncation

イロト 不得下 イヨト イヨト 二日

Abelian DSEs in Minkowski space Coupled equations for Nakanishi weights

Cédric Mezrag (Irfu-DPhN)

Gap Equation

February 17th, 2021

5 × 5 × 5

Back to the Gap equations

$$\begin{split} \Pi_{R}(\zeta,\zeta_{p};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma^{\nu}_{Q}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{p}^{2}} \left[\Gamma^{\nu}_{Q}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{p}^{2}} \right\} \Big] \\ \Sigma_{R}(\zeta;p) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D^{R}_{\beta\alpha}(\zeta,p-k) \; \Gamma^{\alpha}_{Q}(\zeta;k,p) - \left[D^{R}_{\beta\alpha}(\zeta,p-k) \; \Gamma^{\alpha}_{Q}(\zeta;k,p) \right]_{p^{2}=\zeta^{2}} \right\} \end{split}$$

- < 注 → < 注 → - 注

< □ > < 同 >

Back to the Gap equations

$$\begin{split} \Pi_{R}(\zeta,\zeta_{\rho};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma_{Q}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{\rho}^{2}} \left[\Gamma_{Q}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{\rho}^{2}} \right\} \Big] \\ \Sigma_{R}(\zeta;p) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{Q}^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^{R}(\zeta,p-k) \; \Gamma_{Q}^{\alpha}(\zeta;k,p) \right]_{p^{2}=\zeta^{2}} \right\} \end{split}$$

• Straightforward, albeit tedious, steps:

- ▶ replace Π_R , \mathcal{A}_R , \mathcal{B}_R with their Nakanishi representations
- replace S_R and D_R with their Källen-Lehmann representations
- reduce the rhs to the same denominator through the Feynman trick
- integrate over k for p and q spacelike

Back to the Gap equations

$$\begin{aligned} \Pi_{R}(\zeta,\zeta_{\rho};q) &= -iZ_{1}(\zeta,\Lambda) \; \frac{4}{3} \; e_{R}^{2} \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \mathcal{P}_{\mu\nu} \frac{1}{4} \mathrm{Tr} \Big[\gamma^{\mu} S_{R}(\zeta,k) \\ & \times \left\{ \frac{1}{q^{2}} \Gamma_{Q}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) - \frac{1}{\zeta_{\rho}^{2}} \left[\Gamma_{Q}^{\nu}(\zeta,k,q) \; S_{R}(\zeta,k-q) \right]_{q^{2}=\zeta_{\rho}^{2}} \right\} \Big] \\ \Sigma_{R}(\zeta;\rho) &= -iZ_{1}(\zeta,\Lambda) \; e_{R}^{2} \; \int_{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} \; \gamma^{\beta} \; S_{R}(\zeta,k) \\ & \times \left\{ D_{\beta\alpha}^{R}(\zeta,\rho-k) \; \Gamma_{Q}^{\alpha}(\zeta;k,p) - \left[D_{\beta\alpha}^{R}(\zeta,\rho-k) \; \Gamma_{Q}^{\alpha}(\zeta;k,p) \right]_{\rho^{2}=\zeta^{2}} \right\} \end{aligned}$$

• Straightforward, albeit tedious, steps:

- ▶ replace Π_R , \mathcal{A}_R , \mathcal{B}_R with their Nakanishi representations
- ▶ replace S_R and D_R with their Källen-Lehmann representations
- reduce the rhs to the same denominator through the Feynman trick
- integrate over k for p and q spacelike
- Less straightforward steps:
 - rearrange the rhs and perform the proper change of variable to obtain the same structure of external momentum than the lhs
 - finally use the unicity of the Nakanishi representation to identify the gap equation fulfilled by the weight

Cédric Mezrag (Irfu-DPhN)

Gap Equation

February 17th, 2021

Change of Variable

• The Nakanishi representations yield:

$$\Pi_R(\zeta,\zeta_p;q) = (\zeta_p^2 - q^2) \int_{s_{th}^p}^{\infty} \mathrm{d}s \frac{\rho_\gamma(s,\zeta^2)}{(q^2 - s + i\epsilon)(\zeta_p^2 - s)}$$
$$\Sigma_R(\zeta;q) = (\zeta^2 - p^2) \int_{s_{th}^p}^{\infty} \mathrm{d}s \frac{\not p \rho_A(s,\zeta^2) + \rho_B(s,\zeta^2)}{(p^2 - s + i\epsilon)(\zeta^2 - s)}$$

February 17th, 2021

Change of Variable

• The Nakanishi representations yield:

$$\Pi_{R}(\zeta, \zeta_{p}; q) = (\zeta_{p}^{2} - q^{2}) \int_{s_{th}^{p}}^{\infty} \mathrm{d}s \frac{\rho_{\gamma}(s, \zeta^{2})}{(q^{2} - s + i\epsilon)(\zeta_{p}^{2} - s)}$$
$$\Sigma_{R}(\zeta; q) = (\zeta^{2} - p^{2}) \int_{s_{th}^{p}}^{\infty} \mathrm{d}s \frac{\not p \rho_{A}(s, \zeta^{2}) + \rho_{B}(s, \zeta^{2})}{(p^{2} - s + i\epsilon)(\zeta^{2} - s)}$$

- In the self-energy loop of the DSEs:
 - potentially 6 unbounded integration variables (ρ and σ)
 - various number of Feynman parameters
 - \rightarrow many integration parameters needs to be rearranged

cea

Change of Variable

• The Nakanishi representations yield:

$$\Pi_{R}(\zeta, \zeta_{p}; q) = (\zeta_{p}^{2} - q^{2}) \int_{s_{th}^{p}}^{\infty} \mathrm{d}s \frac{\rho_{\gamma}(s, \zeta^{2})}{(q^{2} - s + i\epsilon)(\zeta_{p}^{2} - s)}$$
$$\Sigma_{R}(\zeta; q) = (\zeta^{2} - p^{2}) \int_{s_{th}^{p}}^{\infty} \mathrm{d}s \frac{\not p \rho_{A}(s, \zeta^{2}) + \rho_{B}(s, \zeta^{2})}{(p^{2} - s + i\epsilon)(\zeta^{2} - s)}$$

- In the self-energy loop of the DSEs:
 - potentially 6 unbounded integration variables (ρ and σ)
 - various number of Feynman parameters
 - \rightarrow many integration parameters needs to be rearranged
- one needs to get the same denominator power
 - achieve through approriate change of variable and integration on specific variables
 - or obtained through integration by parts

An example of result

$$\Theta(y - s_{th}) \rho_A(y,\zeta) = \frac{3}{(4\pi)^2} e_R^2 \lim_{\Lambda \to \infty} Z_1(\zeta,\Lambda) \int_0^\infty d\omega \,\bar{\sigma}_\gamma(\omega,\zeta,\zeta_P,\Lambda) \int_0^1 d\xi \int_0^\infty ds' \left\{ \bar{\sigma}_V(s',\zeta,s'_{th},\Lambda) \left[\xi \Theta(y\xi(1-\xi) - \xi\omega - (1-\xi)s') - \int_0^{1-\xi} dt \Theta(yt(1-t) - \xi\omega - ts') \right] + \bar{\sigma}_V(s',\zeta,s'_{th},\Lambda) \right\} \\ \times \left[\int_{s_{th}}^\infty ds \,\rho_A(s,\zeta,\Lambda) \,\mathcal{C}_{AV}^{(0)}(\zeta,\omega,s,s',\xi,y) + y \int_{s_{th}}^\infty ds \,\rho_A(s,\zeta,\Lambda) \,\mathcal{C}_{AV}^{(1)}(\zeta,\omega,s,s',\xi,y) \right] \\ - y\bar{\sigma}_S(s',\zeta,s'_{th},\Lambda) \int_0^{1-\xi} dt \int_0^{1-\xi-t} dw \\ \times \int_{s_{th}}^\infty ds \,\rho_B(s,\zeta,\Lambda) \Delta' \left[y - s + \frac{s\mathcal{A}_4(t,w) - \xi\omega - ts' - ws}{\mathcal{A}_4(t,w)} \right] \right\}$$

Cédric Mezrag (Irfu-DPhN)

February 17th, 2021

Recovering the 1-loop results I Nakanishi weights

$$\begin{split} \Theta\Big(y - s_{th}\Big)\rho_A^{(1)}(y,\zeta) &= -\frac{e_R^2}{2(4\pi)^2}\frac{1}{\zeta_\rho^2 y^2}\Theta(y - m^2)\bigg\{\Theta\Big[[m + \zeta_\rho]^2 - y\Big]\Big(y - m^2\Big)^3 \\ &+ \Theta\Big[y - [m + \zeta_\rho]^2\Big]\Big(y - m^2\Big)^3\Big[1 - f(y,\zeta,\zeta_\rho^2)\Big]\bigg\},\\ f(y,\zeta^2,\zeta_\rho^2) &= \sqrt{1 - \zeta_\rho^2}\frac{2y + 2m^2 - \zeta_\rho^2}{(y - m^2)^2}\bigg[1 + \zeta_\rho^2\frac{y + m^2 - 2\zeta_\rho^2}{\left(y - m^2\right)^2}\bigg],\\ \Theta\Big(y - s_{th}\Big)\rho_B^{(1)}(y,\zeta) &= -\frac{3e_R^2}{(4\pi)^2}\Theta\Big[y - [m + \zeta_\rho]^2\Big]\frac{m}{y}\sqrt{[y - m^2 - \zeta_\rho^2]^2 - 4m^2\zeta_\rho^2}\\ \Theta(y - s_{th}^\rho)\rho_\gamma^{(1)}(y,\zeta) &= -\frac{e_R^2}{3(2\pi)^2}\Theta(y)\Theta(y - 4m^2)\Big(1 + 2\frac{m^2}{y}\Big)\sqrt{1 - 4\frac{m^2}{y}} \end{split}$$

- Expected behaviour for $\zeta_p
 ightarrow 0$
- Expected behaviour for $y \to \infty$

Cédric Mezrag (Irfu-DPhN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recovering the 1-loop results II Källen-Lehmann weights

- The Källen-Lehmann weights behave as expected:
 - rapid increase from threshold, reach maximum and slowly go to zero at infinity
 - for fermions, IR divergences noticeable

Summary

Truncation of the gap equations

- Getting a workable and consistent truncation is not easy
- In particular, the bare vertex cannot be used in the photon case
- We learn a great deal on the impact of the symmetries on the interaction
- In the end, the symmetries leave us **no choice** but working with the Qin vertex as a "minimal" vertex

Minkowski space computation

- From the Qin vertex, Källen-Lehmann and Nakanishi representations allows us to handle the momenta algebraically
- We obtained 6 coupled and non-linear equations for six unknown functions
- We checked that we recover expected one-loop results

Perspectives

Scheme dependence

- Check whether things hold in the standard on-shell schemes
- $\bullet\,$ Modification should be of a finite amount despite mixing ${\cal A}$ and ${\cal B}\,$

Gauge dependence

- Open question: does the framework hold in the lightcone gauge ?
- Algebraic momentum dependence: we can expect that yes
 - \rightarrow good news to compute lightcone quantities (PDFs, GPDs, $\dots)$

Numerical effort

- Is the framework workable numerically speaking?
- All final integral are finite, but it does not mean the system will converge toward a solution

イロト イヨト イヨト

э

cea

• Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K

э

• Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K

• My guess: it will **not** work.

• Naive idea: plug the results of our equations in the BSE:

with some Ansatz for the scattering kernel K

- My guess: it will not work.
- Necessary to develop a kernel consistent with Γ^{μ}_{Q}

D. Binosi et al., PRD 93 (2016) 9, 096010 S.-X. Qin and C.D. Roberts, arXiv:2009.13637

with some Ansatz for the scattering kernel K

- My guess: it will not work.
- Necessary to develop a kernel consistent with Γ^{μ}_{Q}

D. Binosi et al., PRD 93 (2016) 9, 096010 S.-X. Qin and C.D. Roberts, arXiv:2009.13637

Once again, the symmetries will dictate the structure of the kernel \rightarrow this needs to be worked out in our case

Modification in QCD

- KL representation not proved but compatible with lattice results D. Binosi and R.-A. Tripolt, PLB 801 (2020) 135171
- Nakanishi → pQCD working at large p, so representation valid with modification of the singularities (e.g. complex conjugate poles)?
- WTI are replaced by STI. Non-abelian BC vertex available (quarks-gluon and 3-gluons cases).

A.C. Aguilar et al., PRD 98 (2018) 1, 014002 A.C. Aguilar et al., PRD 99 (2019) 3, 034026 A.C. Aguilar et al., Phys.Rev.D 99 (2019) 9, 094010

• Up to my knowledge, no equivalent of the tWTIs have been derived

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modification in QCD

- KL representation not proved but compatible with lattice results D. Binosi and R.-A. Tripolt, PLB 801 (2020) 135171
- Nakanishi → pQCD working at large p, so representation valid with modification of the singularities (e.g. complex conjugate poles)?
- WTI are replaced by STI. Non-abelian BC vertex available (quarks-gluon and 3-gluons cases).

A.C. Aguilar et al., PRD 98 (2018) 1, 014002 A.C. Aguilar et al., PRD 99 (2019) 3, 034026 A.C. Aguilar et al., Phys.Rev.D 99 (2019) 9, 094010

• Up to my knowledge, no equivalent of the tWTIs have been derived

Extension to QCD relies on progresses on the gauge constraints on the 3-point and 4-point functions entering the gap equations.

Cédric Mezrag (Irfu-DPhN)

Thank you for your attention