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Disclaimer

Rather technical talk as I was asked to speak specifically on our last
paper
→ I try to make it as lively as possible
For a review of application to observables, see e.g. P. Maris talk in
December and topical review article on DSE-BSE
I tried to come back on some points mentioned during the discussion
following P. Maris talk (I could not attend to)
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Introduction
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Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

figure from Z.F. Cui et al., Chin.Phys.C 44
(2020) 8, 083102

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

figure from A. Bashir et al.,
Commun.Theor.Phys. 58 (2012) 79-134

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Non-perturbative physics

Perturbation theory: a powerful tool to describe scattering in QFT
I anomalous magnetic moment of the electron (multi-loop pQED)
I structure functions scaling violations (major pQCD result)

but some phenomena escape a perturbative description:

I bound states description

I strong coupling regime (e.g.
QCD in the infrared)

I dynamical mass generation

Different approaches to non-perturbative physics
I Lightfront Hamiltonian
I ADS/QCD
I Lattice QCD
I Dyson-Schwinger/Bether Salpeter equations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 4 / 39



Dyson-Schwinger equations

DSEs relate the N-point functions of a given QFT among each other.

Quark case: ( )−1 = ( )−1 − .

Ghost case: ( )−1 = ( )−1 + .

Gluon case: ( )−1 = ( )−1 + +

− 1
2

− 1
6

− 1
2

− 1
2

Coupled to higher N-point functions → infinite set of equations
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Vertex and Bethe-Salpeter equations

3-point functions also obey their own DSEs:

= + Kqq + Kgg

+ Khh + Kggg

Higher point functions present poles at bound-states masses
→ residues yield the Bethe-Salpeter wave functions

= K .

DSE-BSE formalism provides a way to study bound states
Approximations are required to close the system (truncations)
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Euclidean vs. Minkowski Space

Usually, DSE-BSE are solved numerically in Euclidean space
I External momenta are continued in the complex plane
I Can reveal itself numerically challenging
I A direct access to lighfront quantities can be difficult

Attempts to solve the DSEs in Minkowski space remain scarce
V. Sauli J. Phys. G30, 739 (2004)

S. Jia and M.R. Pennington, Phys. Rev. D96(3), 036021(2017)
E. Solis et al., Few Body Syst.60(3), 49 (2019)

V. Sauli, aXiv:1909.03043
. . .

More BSE studies have been performed but using very simple kernels
K. Kusaka et al., Phys. Rev. D56, 5071 (1997)

V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27, 1 (2006)
T. Frederico et al., Phys. Rev. D89, 016010 (2014)

V. Sauli Int. J. Theor. Phys.54(11), 4131 (2015)
E. Ydrefors et al., Phys. Lett. B791, 276 (2019)

T. Frederico et al., arXiv:1905.00703
. . .

Our idea
Can we “export” to Minkowski space the theoretical progresses achieved in
euclidean one?
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Two-point functions in Minkowski space
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Exploratory work: Abelian theory

Abelian DSE are much simpler than QCD ones:

Fermion case: ( )−1 = ( )−1 − .

(((
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Abelian theories presents interesting properties that can be exploited.
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Propagators and Self-energies

Fermion Case:

iS−1
R (p, ζ2) = /p −m − ΣR(p, ζ2)

ΣR(p, ζ2) = /pAR(p, ζ2) + BR(p, ζ2)

Photon case in covariant gauges:

Dµν
R (q, ζ2) = −i Tµν(q)

(q2 + iε) (1 + ΠR(q2, ζ2))

Tµν(q) = ηµν − (1− ξ)
qµqν

q2
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Källen-Lehmann representation

The Källen-Lehmann representation is a key property of the
propagator:

SR(p, ζ2) = iRS
/p + m

p2 −m2 + iε
+ i

∫ ∞
sth

/pσv (s, ζ) + σs(s, ζ)

p2 − s + iε

Dµν
R (q, ζ) = −iTµν(q)

(
RD

q2 + iε
+

∫ ∞
spth

σγ(s, ζ2)

q2 − s + iε

)

with RS and RD the residues at the fermion and photon poles.

It relies on non-perturbative arguments involving:
I asymptotic states
I complete set states

Advantages: algebraic manipulation of the momenta

What about self energies?

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 11 / 39



Källen-Lehmann representation

The Källen-Lehmann representation is a key property of the
propagator:

SR(p, ζ2) = iRS
/p + m

p2 −m2 + iε
+ i

∫ ∞
sth

/pσv (s, ζ) + σs(s, ζ)

p2 − s + iε

Dµν
R (q, ζ) = −iTµν(q)

(
RD

q2 + iε
+

∫ ∞
spth

σγ(s, ζ2)

q2 − s + iε

)

with RS and RD the residues at the fermion and photon poles.
It relies on non-perturbative arguments involving:

I asymptotic states
I complete set states

Advantages: algebraic manipulation of the momenta

What about self energies?

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 11 / 39



Källen-Lehmann representation

The Källen-Lehmann representation is a key property of the
propagator:

SR(p, ζ2) = iRS
/p + m

p2 −m2 + iε
+ i

∫ ∞
sth

/pσv (s, ζ) + σs(s, ζ)

p2 − s + iε

Dµν
R (q, ζ) = −iTµν(q)

(
RD

q2 + iε
+

∫ ∞
spth

σγ(s, ζ2)

q2 − s + iε

)

with RS and RD the residues at the fermion and photon poles.
It relies on non-perturbative arguments involving:

I asymptotic states
I complete set states

Advantages: algebraic manipulation of the momenta

What about self energies?

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 11 / 39



Källen-Lehmann representation

The Källen-Lehmann representation is a key property of the
propagator:

SR(p, ζ2) = iRS
/p + m

p2 −m2 + iε
+ i

∫ ∞
sth

/pσv (s, ζ) + σs(s, ζ)

p2 − s + iε

Dµν
R (q, ζ) = −iTµν(q)

(
RD

q2 + iε
+

∫ ∞
spth

σγ(s, ζ2)

q2 − s + iε

)

with RS and RD the residues at the fermion and photon poles.
It relies on non-perturbative arguments involving:

I asymptotic states
I complete set states

Advantages: algebraic manipulation of the momenta

What about self energies?

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 11 / 39



Nakanishi representation I
Introduction and definitions

Nakinishi representation (also called Perturbative Integral
Representation -PTIR-)

see e.g, N. Nakanishi,Graph Theory and Feynman Integrals, Gordon and Breach 1971

It relies graph theory (studies of graph having N external legs) and
exploits Feynman trick
It yields the following representations:

Z2(ζ)Σ(p,Λ) =

∫ ∞
0

[ds]Λ
/pρA(s, ζ2) + ρB(s, ζ2)

p2 − s + iε

Z3(ζ)Π(q,Λ) =

∫ ∞
0

[ds]Λ
ργ(s, ζ2)

q2 − s + iε

allowing the algebraic manipulation of the momenta.
Such a representation is proven to hold at all order of perturbation
theory

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 12 / 39



Nakanishi representation I
Introduction and definitions

Nakinishi representation (also called Perturbative Integral
Representation -PTIR-)

see e.g, N. Nakanishi,Graph Theory and Feynman Integrals, Gordon and Breach 1971

It relies graph theory (studies of graph having N external legs) and
exploits Feynman trick

It yields the following representations:

Z2(ζ)Σ(p,Λ) =

∫ ∞
0

[ds]Λ
/pρA(s, ζ2) + ρB(s, ζ2)

p2 − s + iε

Z3(ζ)Π(q,Λ) =

∫ ∞
0

[ds]Λ
ργ(s, ζ2)

q2 − s + iε

allowing the algebraic manipulation of the momenta.
Such a representation is proven to hold at all order of perturbation
theory

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 12 / 39



Nakanishi representation I
Introduction and definitions

Nakinishi representation (also called Perturbative Integral
Representation -PTIR-)

see e.g, N. Nakanishi,Graph Theory and Feynman Integrals, Gordon and Breach 1971

It relies graph theory (studies of graph having N external legs) and
exploits Feynman trick
It yields the following representations:

Z2(ζ)Σ(p,Λ) =

∫ ∞
0

[ds]Λ
/pρA(s, ζ2) + ρB(s, ζ2)

p2 − s + iε

Z3(ζ)Π(q,Λ) =

∫ ∞
0

[ds]Λ
ργ(s, ζ2)

q2 − s + iε

allowing the algebraic manipulation of the momenta.

Such a representation is proven to hold at all order of perturbation
theory

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 12 / 39



Nakanishi representation I
Introduction and definitions

Nakinishi representation (also called Perturbative Integral
Representation -PTIR-)

see e.g, N. Nakanishi,Graph Theory and Feynman Integrals, Gordon and Breach 1971

It relies graph theory (studies of graph having N external legs) and
exploits Feynman trick
It yields the following representations:

Z2(ζ)Σ(p,Λ) =

∫ ∞
0

[ds]Λ
/pρA(s, ζ2) + ρB(s, ζ2)

p2 − s + iε

Z3(ζ)Π(q,Λ) =

∫ ∞
0

[ds]Λ
ργ(s, ζ2)

q2 − s + iε

allowing the algebraic manipulation of the momenta.
Such a representation is proven to hold at all order of perturbation
theory

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 12 / 39



Nakanishi representation II
Advantages and drawback

Advantages
Crucially, the ρ are unique and independent of the momenta.
Such relations can be generalised to higher N-point functions, such as
the vertex function (N=3), the scattering amplitude (N=4)...

see seminar by P. Maris in December

Γ(k ,P,Λ) =

∫ 1

−1
[dz ]Λ

∫ ∞
0

[dβ]Λ
ρ(z , β)

β −
(
k + z

2P
)2

Drawback
All order of perturbation theory 6= non-perturbatively
→ weaker than the “Källen-Lehmann” proof (at least in Abelian case)
However:

I assume that the Nakanishi representation hold non-perturbatively
I price to pay might be that ρ are not smooth functions
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Nakanishi representation III
Previous studies

Previously used for the self-energy through direct computations
V. Sauli, J. Phys., 2004, G30, 739-758

. . .

And also in the case of the vertex function
I Using simple algebraic ρ functions

C. Mezrag et al., PLB 741 (2015) 190-196
N. Chouika et al., PLB 780 (2018) 287-293

. . .

I attempts of direct calculations in Minkowski space
J. Carbonell et al., Eur. Phys. J., 2017, C77, 58

J. H. Alvarenga Nogueira et al., PRD 100, 2019, 016021
. . .

I or trying to solve the inverse “Nakanishi problem” through Bayesian
techniques in euclidean space

F. Gao et al., PLB770 551-555 (2017)

We will look for a direct computation through the DSE
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Gauge fixing and renormalisation conventions

Gauge Dependence : we will work in the Landau gauge

Renormalisation Conditions
I Standard on-shell scheme (ζ2 = m2):

mAR(m2,m2) + BR(m2,m2) = 0

AR(m2,m2) + 2m
(
m
∂AR

∂p2 (m2,m2) +
∂B

∂p2 (m2,m2)

)
= 0

mixes AR and BR → cumbersome for an exploratory study

I RI’/MOM scheme “on-shell” (ζ2 = m2):

AR(m2,m2) = 0 BR(m2,m2) = 0

price to pay: the residue at the pole is not 1 anymore
I Photon case : standard ΠR(ζ2

p , ζ
2
p ) = 0 for ζp being a IR regulator

I Renormalisation constant given in terms of Nakanishi weights:

Z2(ζ = m,Λ) = 1 +

∫ ∞
m2

[ds]Λ
ρA(s, ζ)

m2 − s + iε

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 15 / 39



Gauge fixing and renormalisation conventions

Gauge Dependence : we will work in the Landau gauge
Renormalisation Conditions

I Standard on-shell scheme (ζ2 = m2):

mAR(m2,m2) + BR(m2,m2) = 0

AR(m2,m2) + 2m
(
m
∂AR

∂p2 (m2,m2) +
∂B

∂p2 (m2,m2)

)
= 0

mixes AR and BR → cumbersome for an exploratory study

I RI’/MOM scheme “on-shell” (ζ2 = m2):

AR(m2,m2) = 0 BR(m2,m2) = 0

price to pay: the residue at the pole is not 1 anymore
I Photon case : standard ΠR(ζ2

p , ζ
2
p ) = 0 for ζp being a IR regulator

I Renormalisation constant given in terms of Nakanishi weights:

Z2(ζ = m,Λ) = 1 +

∫ ∞
m2

[ds]Λ
ρA(s, ζ)

m2 − s + iε

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 15 / 39



Gauge fixing and renormalisation conventions

Gauge Dependence : we will work in the Landau gauge
Renormalisation Conditions

I Standard on-shell scheme (ζ2 = m2):

mAR(m2,m2) + BR(m2,m2) = 0

AR(m2,m2) + 2m
(
m
∂AR

∂p2 (m2,m2) +
∂B

∂p2 (m2,m2)

)
= 0

mixes AR and BR → cumbersome for an exploratory study
I RI’/MOM scheme “on-shell” (ζ2 = m2):

AR(m2,m2) = 0 BR(m2,m2) = 0

price to pay: the residue at the pole is not 1 anymore

I Photon case : standard ΠR(ζ2
p , ζ

2
p ) = 0 for ζp being a IR regulator

I Renormalisation constant given in terms of Nakanishi weights:

Z2(ζ = m,Λ) = 1 +

∫ ∞
m2

[ds]Λ
ρA(s, ζ)

m2 − s + iε

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 15 / 39



Gauge fixing and renormalisation conventions

Gauge Dependence : we will work in the Landau gauge
Renormalisation Conditions

I Standard on-shell scheme (ζ2 = m2):

mAR(m2,m2) + BR(m2,m2) = 0

AR(m2,m2) + 2m
(
m
∂AR

∂p2 (m2,m2) +
∂B

∂p2 (m2,m2)

)
= 0

mixes AR and BR → cumbersome for an exploratory study
I RI’/MOM scheme “on-shell” (ζ2 = m2):

AR(m2,m2) = 0 BR(m2,m2) = 0

price to pay: the residue at the pole is not 1 anymore
I Photon case : standard ΠR(ζ2

p , ζ
2
p ) = 0 for ζp being a IR regulator

I Renormalisation constant given in terms of Nakanishi weights:

Z2(ζ = m,Λ) = 1 +

∫ ∞
m2

[ds]Λ
ρA(s, ζ)

m2 − s + iε

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 15 / 39



Gauge fixing and renormalisation conventions

Gauge Dependence : we will work in the Landau gauge
Renormalisation Conditions

I Standard on-shell scheme (ζ2 = m2):

mAR(m2,m2) + BR(m2,m2) = 0

AR(m2,m2) + 2m
(
m
∂AR

∂p2 (m2,m2) +
∂B

∂p2 (m2,m2)

)
= 0

mixes AR and BR → cumbersome for an exploratory study
I RI’/MOM scheme “on-shell” (ζ2 = m2):

AR(m2,m2) = 0 BR(m2,m2) = 0

price to pay: the residue at the pole is not 1 anymore
I Photon case : standard ΠR(ζ2

p , ζ
2
p ) = 0 for ζp being a IR regulator

I Renormalisation constant given in terms of Nakanishi weights:

Z2(ζ = m,Λ) = 1 +

∫ ∞
m2

[ds]Λ
ρA(s, ζ)

m2 − s + iε
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Divide & rule strategy
First set of equations

Exploit our various expressions for SR (and Dµν
R )

SR(p, ζ2) = Rs
/p + m

p2 −m2 + iε
+

∫ ∞
sth

/pσv (s, ζ2) + σs(s, ζ2)

p2 − s + iε

=
/p
(
1−AR(p2, ζ2)

)
+ m + BR(p2, ζ2)

p2 (1−AR(p2, ζ2))2 − (m + BR(p2, ζ2))2

Using the Sokhotski–Plemelj formula for p2 > m2

It yields the σ as (non-linear) functions of the ρ
This yields 3 equations in our system of 6 unknown
(σv , σs , σγ , ρA, ρB , ργ)

3 more are provided by the gap equations.
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Abelian DSEs in Minkowski space
In Search of Lost Vertex
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Abelian Gap equations

( )−1 = ( )−1 −

( )−1 = ( )−1 +

ΣR(ζ; p) =− iZ1(ζ,Λ) e2
R

∫
Λ

d4k

(2π)4 γβ SR(ζ, k)

×
{
DR

βα(ζ, p − k) Γα
R(ζ; k , p)−

[
DR

βα(ζ, p − k) Γα
R(ζ; k , p)

]
p2=ζ2

}
.

ΠR(ζ; q) =− iZ1(ζ,Λ)
4
3
e2
R

∫
Λ

d4k

(2π)4 Pµν
1
4
Tr
[
γµSR(ζ, k)

×
{

1
q2 Γν

R(ζ, k , q) SR(ζ, k − q)− 1
ζ2
p

[Γν
R(ζ, k , q) SR(ζ, k − q)]q2=ζ2

p

}]

The last thing to get under control is the vertex
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Tree-level vertex approximation

First thing one could look at: neglecting higher point functions:

= +

�
��

�
��

��

Kqq

Independent of the momenta → all momenta degrees of freedom of
the self-energy can be algebraically manipulated
It works well for the fermion self-energy

Major issues
The vacuum polarisation tensor Πµν is not transverse anymore
Quadratic divergences (proportional to ηµν) do not vanish as they
should
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Ward-Takahashi Identities

Ward-Takahashi Identities are the consequence of current conservation

They relates some N-point functions with lower N ones.
In the case of the three-point function, one has:

(k2 − k1)µΓµ
R(k2, k1, ζ) = iS−1

R (k2, ζ)− iS−1
R (k1, ζ)

= (/k2 − /k1)︸ ︷︷ ︸
tree-level vertex

− (/k2AR(k2)− /k1AR(k1))− (BR(k2)−BR(k1))

A tree level vertex violates the WTI → not suitable for handling the photon

Need to build a vertex fulfilling all the required symmetry properties

((((
((((

(((
((((

(((
((((

((

= + Kqq
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Ball-Chiu vertex I
Exploiting WTI

Instead of using the DSE to build the vertex, use directly the WTI:

(k2 − k1)µΓµ
R(k2, k1, ζ) = iS−1

R (k2, ζ)− iS−1
R (k1, ζ)

→ build the vertex from the propagator instead of the scattering kernel

The idea behind the use of the Ball-Chiu vertex:

Γµ
R(k2, k1, ζ) =Γµ

BC (k2, k1, ζ)

=
4∑

i=1

λµi (k2, k1)Fi (k2, k1, ζ)︸ ︷︷ ︸
Fully determined by the WTI

J. Ball and T.-W. Chiu, PRD 22 (1980) 2550

Ball-Chiu approximation: Γµ
R(k2, k1, ζ) = Γµ

BC (k2, k1, ζ)
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Ball-Chiu Vertex II
Obtaining a closed system

Detailed structure of the BC vertex:

λµ
1 =

γµ

2
→ F1(k2, k1, ζ) = 2−AR(k22 , ζ

2)−AR(k21 , ζ
2)

λµ
2 = −

/k1 + /k2
2

(k1 + k2)µ → F2(k2, k1, ζ) =
AR(k22 , ζ

2)−AR(k21 , ζ
2)

k22 − k21

λµ
3 = −(k2 + k1)µ → F3(k2, k1, ζ) =

BR(k22 , ζ
2)−BR(k21 , ζ

2)

k22 − k21

λµ
4 = (k1 + k2)νσ

µν → F4(k2, k1, ζ) = 0

Recalling the Nakanishi representation:

AR(p2, ζ2) = (ζ2 − p2)

∫ ∞
0

ds
ρA(s, ζ2)

(p2 − s + iε)(ζ2 − s)

we obtain a vertex which
I by construction fulfil the WTI → Πµν

R is transverse and finite

I depends only on the fermion self energy → the system is closed

I allow algebraic manipulation of the momenta degrees of freedom
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Ball-Chiu Vertex III
Renormalisation

ΠR(ζ, ζp; q) =− iZ1(ζ,Λ)
4
3
e2R

∫
Λ

d4k

(2π)4
Pµν

1
4
Tr
[
γµSR(ζ, k)

×
{

1
q2

Γν
BC (ζ, k, q) SR(ζ, k − q)− 1

ζ2p
[Γν

BC (ζ, k, q) SR(ζ, k − q)]q2=ζ2
p

}]
ΣR(ζ; p) =− iZ1(ζ,Λ) e2R

∫
Λ

d4k
(2π)4

γβ SR(ζ, k)

×
{
DR

βα(ζ, p − k) Γα
BC (ζ; k, p)−

[
DR

βα(ζ, p − k) Γα
BC (ζ; k, p)

]
p2=ζ2

}

ΣR(ζ; p) becomes logarithmically divergent !

Where do these new singularities come from?

F1(k, p, ζ) = 2−AR(k2, ζ2)− AR(p2, ζ2)︸ ︷︷ ︸
→0 when p2→ζ2

→ some logarithmic singularities
are not subtracted by our renor-
malisation procedure
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Renormalisation and BC vertex

Is this a problem with our renormalisation condition AR(ζ2, ζ2) = 0?
→ no, if AR(ζ2, ζ2) 6= 0 the singularities do not compensate

The problem is actually known since the work of M. Pennington and
D. Curtis → the BC vertex is inconsistent with multiplicative
renormalisation

D. Curtis and M. Pennington, PRD 42, 1990, 4165-4169

This issue can be fixed using Γµ
T

Γµ
PC (ζ; k , p) = Γµ

BC (ζ; k, p) + τµ6 F
T
6;PC (k2, p2, ζ2)

Solution to the issue is not unique → constraints on the purely
transverse components to fulfil multiplicative renormalisation

A. Bashir et al., PRC 85, 045205 (2012)
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Solution to the issue is not unique → constraints on the purely
transverse components to fulfil multiplicative renormalisation

A. Bashir et al., PRC 85, 045205 (2012)
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transverse WTI

Lesser known transverse WTIs (q = k − p, t = k + p):

qµΓν(k, p)− qνΓµ(k, p) =S−1(p)σµν + σµνS
−1(k)

+ 2imΓµν(k , p) + tλελµνρΓA
ρ (k, p) + AV

µν(k , p)

qµΓA
ν (k, p)− qνΓA

µ(k, p) =S−1(p)γ5σµν + γ5σµνS
−1(k)

+ tλελµνρΓρ(k , p) + V A
µν(k, p)

Y. Takahashi, 1985, Print-85-0421 (Alberta)
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
H.-X. He, arXiv:hep-th/0202013

H.-X. He, Commun. Theor. Phys.46, 109 (2006)
H.-X. He, Int. J. Mod. Phys.A22, 2119 (2007)

S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

Some comments:

I Take advantage of the curl of the vertex (∇× Γ)
I Coupled equations between vector and axial-vector vertices
I Involve higher-point functions Γµν , AV

µν and V A
µν

I Fully constrain the vertex in terms of the self energy for 1+1 QED
K.-I. Kondo, Int. J. Mod. Phys.A12, 5651 (1997)
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The Qin vertex I
Definition

In QED 3+1 the tWTI fully constrain the transverse vertex ΓT
µ

relating it to higher N-point function
I for j ∈ (1, 2, 4, 6, 7), FT

j solely depends on higher N-point functions
I for j ∈ (3, 5, 8), FT

j depends also on the fermion self-energy
S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

Neglecting higher N-point functions, the Qin et al. truncation yields:

FT
3 (k, p) = −AR(k2)−AR(p2)

2(k2 − p2)

FT
5 (k, p) =

BR(k2)−BR(p2)

(k2 − p2)

FT
8 (k, p) =

AR(k2)−AR(p2)

(k2 − p2)

FT
j (k , p) = 0 for j 6= (3, 5, 8)

This is not a standard vertex truncation:
it does not involve any “graph” discussion (ladder, cross-ladder, . . . )
it purely relies on symmetry considerations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 26 / 39



The Qin vertex I
Definition

In QED 3+1 the tWTI fully constrain the transverse vertex ΓT
µ

relating it to higher N-point function
I for j ∈ (1, 2, 4, 6, 7), FT

j solely depends on higher N-point functions
I for j ∈ (3, 5, 8), FT

j depends also on the fermion self-energy
S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

Neglecting higher N-point functions, the Qin et al. truncation yields:

FT
3 (k, p) = −AR(k2)−AR(p2)

2(k2 − p2)

FT
5 (k, p) =

BR(k2)−BR(p2)

(k2 − p2)

FT
8 (k , p) =

AR(k2)−AR(p2)

(k2 − p2)

FT
j (k , p) = 0 for j 6= (3, 5, 8)

This is not a standard vertex truncation:
it does not involve any “graph” discussion (ladder, cross-ladder, . . . )
it purely relies on symmetry considerations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 26 / 39



The Qin vertex I
Definition

In QED 3+1 the tWTI fully constrain the transverse vertex ΓT
µ

relating it to higher N-point function
I for j ∈ (1, 2, 4, 6, 7), FT

j solely depends on higher N-point functions
I for j ∈ (3, 5, 8), FT

j depends also on the fermion self-energy
S.-X. Qin et al., Phys.Lett.B 722 (2013) 384-388

Neglecting higher N-point functions, the Qin et al. truncation yields:

FT
3 (k, p) = −AR(k2)−AR(p2)

2(k2 − p2)

FT
5 (k, p) =

BR(k2)−BR(p2)

(k2 − p2)

FT
8 (k , p) =

AR(k2)−AR(p2)

(k2 − p2)

FT
j (k , p) = 0 for j 6= (3, 5, 8)

This is not a standard vertex truncation:
it does not involve any “graph” discussion (ladder, cross-ladder, . . . )
it purely relies on symmetry considerations

Cédric Mezrag (Irfu-DPhN) Gap Equation February 17th , 2021 26 / 39



The Qin vertex II
Application and Impact

Impact of the Qin vertex :
I FT

3 (k , p) and FT
8 (k , p) together cure the BC vertex

→ we get both ΣR and ΠR finite !
I FT

5 (k , p) is not considered here → it might create troubles
A. Bashir et al., PRC 85, 045205 (2012)

Summarising, on the 12 independent structures, we get:
I 3 are exactly and purely given in terms of ΣR

I 1 is exactly zero
I 3 are approximately given in terms of ΣR only
I 5 are neglected

The Qin vertex is a long way from the tree-level one
The symmetries are merciless → they determine the truncation
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Abelian DSEs in Minkowski space
Coupled equations for Nakanishi weights
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Back to the Gap equations

ΠR(ζ, ζp; q) =− iZ1(ζ,Λ)
4
3
e2R

∫
Λ

d4k

(2π)4
Pµν

1
4
Tr
[
γµSR(ζ, k)

×
{

1
q2

Γν
Q(ζ, k, q) SR(ζ, k − q)− 1

ζ2p
[Γν

Q(ζ, k, q) SR(ζ, k − q)]q2=ζ2
p

}]
ΣR(ζ; p) =− iZ1(ζ,Λ) e2R

∫
Λ

d4k
(2π)4

γβ SR(ζ, k)

×
{
DR

βα(ζ, p − k) Γα
Q(ζ; k, p)−

[
DR

βα(ζ, p − k) Γα
Q(ζ; k, p)

]
p2=ζ2

}

Straightforward, albeit tedious, steps:
I replace ΠR , AR , BR with their Nakanishi representations
I replace SR and DR with their Källen-Lehmann representations
I reduce the rhs to the same denominator through the Feynman trick
I integrate over k for p and q spacelike

Less straightforward steps:
I rearrange the rhs and perform the proper change of variable to obtain

the same structure of external momentum than the lhs
I finally use the unicity of the Nakanishi representation to identify the

gap equation fulfilled by the weight
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Change of Variable

The Nakanishi representations yield:

ΠR(ζ, ζp; q) =(ζ2
p − q2)

∫ ∞
spth

ds
ργ(s, ζ2)

(q2 − s + iε)(ζ2
p − s)

ΣR(ζ; q) =(ζ2 − p2)

∫ ∞
spth

ds
/pρA(s, ζ2) + ρB(s, ζ2)

(p2 − s + iε)(ζ2 − s)

In the self-energy loop of the DSEs:
I potentially 6 unbounded integration variables (ρ and σ)
I various number of Feynman parameters

→ many integration parameters needs to be rearranged
one needs to get the same denominator power

I achieve through approriate change of variable and integration on
specific variables

I or obtained through integration by parts
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An example of result

Θ
(
y − sth

)
ρA(y , ζ) =

3
(4π)2

e2R lim
Λ→∞

Z1(ζ,Λ)

∫ ∞
0

dω σ̄γ(ω, ζ, ζp,Λ)

∫ 1

0
dξ

∫ ∞
0

ds ′{
σ̄V (s ′, ζ, s ′th,Λ)

[
ξ Θ

(
yξ(1− ξ)− ξω − (1− ξ)s ′

)
−
∫ 1−ξ

0
dtΘ

(
yt(1− t)− ξω − ts ′

)]
+ σ̄V (s ′, ζ, s ′th,Λ)

×

[ ∫ ∞
sth

ds ρA(s, ζ,Λ) C
(0)
AV (ζ, ω, s, s ′, ξ, y)

+ y

∫ ∞
sth

ds ρA(s, ζ,Λ) C
(1)
AV (ζ, ω, s, s ′, ξ, y)

]

− y σ̄S(s ′, ζ, s ′th,Λ)

∫ 1−ξ

0
dt

∫ 1−ξ−t

0
dw

×
∫ ∞
sth

ds ρB(s, ζ,Λ)∆′
[
y − s +

sA4(t,w)− ξω − ts ′ − ws

A4(t,w)

]}
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Recovering the 1-loop results I
Nakanishi weights

Θ
(
y − sth

)
ρ

(1)
A (y , ζ) =− e2R

2(4π)2
1

ζ2p y2
Θ(y −m2)

{
Θ
[
[m + ζp]2 − y

](
y −m2

)3
+ Θ

[
y − [m + ζp]2

] (
y −m2

)3[
1− f (y , ζ, ζ2p )

]}
,

f (y , ζ2, ζ2p ) =

√
1− ζ2p

2y + 2m2 − ζ2p
(y −m2)2

[
1 + ζ2p

y + m2 − 2ζ2p(
y −m2

)2
]
,

Θ
(
y − sth

)
ρ

(1)
B (y , ζ) =− 3e2R

(4π)2
Θ
[
y − [m + ζp]2

]m
y

√
[y −m2 − ζ2p ]2 − 4m2ζ2p

Θ(y − spth) ρ(1)
γ (y , ζ) =− e2R

3(2π)2
Θ(y)Θ(y − 4m2)

(
1 + 2

m2

y

) √
1− 4

m2

y

Expected behaviour for ζp → 0
Expected behaviour for y →∞
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Recovering the 1-loop results II
Källen-Lehmann weights

0 1 2 3 4
ω/ωth

10-2

10-1

100

- σ
V

(ω
,ζ

)  
m

2 (ζ
)

0 1 2 3 4
ω/ωth

10-2

10-1

100

- σ
S(ω

,ζ
) m

(ζ
)

0 2 4 6 8 10
ω/ωp

th

0.0

0.5

1.0

10
3

σ γ(ω
,ζ

) m
2 (ζ

)/e
2 R

The Källen-Lehmann weights behave as expected:
I rapid increase from threshold, reach maximum and slowly go to zero at

infinity
I for fermions, IR divergences noticeable
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Summary

Truncation of the gap equations
Getting a workable and consistent truncation is not easy
In particular, the bare vertex cannot be used in the photon case
We learn a great deal on the impact of the symmetries on the
interaction
In the end, the symmetries leave us no choice but working with the
Qin vertex as a “minimal” vertex

Minkowski space computation
From the Qin vertex, Källen-Lehmann and Nakanishi representations
allows us to handle the momenta algebraically
We obtained 6 coupled and non-linear equations for six unknown
functions
We checked that we recover expected one-loop results
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Perspectives
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Short term studies

Scheme dependence
Check whether things hold in the standard on-shell schemes
Modification should be of a finite amount despite mixing A and B

Gauge dependence
Open question: does the framework hold in the lightcone gauge ?
Algebraic momentum dependence: we can expect that yes
→ good news to compute lightcone quantities (PDFs, GPDs, . . . )

Numerical effort
Is the framework workable numerically speaking?
All final integral are finite, but it does not mean the system will
converge toward a solution
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Toward bound-states

Naive idea: plug the results of our equations in the BSE:

= K .

with some Ansatz for the scattering kernel K

My guess: it will not work.
Necessary to develop a kernel consistent with Γµ

Q
D. Binosi et al., PRD 93 (2016) 9, 096010

S.-X. Qin and C.D. Roberts, arXiv:2009.13637

Once again, the symmetries will dictate the structure of the kernel
→ this needs to be worked out in our case
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Extension to QCD
A speculative slide

Modification in QCD
KL representation not proved but compatible with lattice results

D. Binosi and R.-A. Tripolt, PLB 801 (2020) 135171

Nakanishi → pQCD working at large p, so representation valid with
modification of the singularities (e.g. complex conjugate poles)?
WTI are replaced by STI. Non-abelian BC vertex available
(quarks-gluon and 3-gluons cases).

A.C. Aguilar et al., PRD 98 (2018) 1, 014002
A.C. Aguilar et al., PRD 99 (2019) 3, 034026

A.C. Aguilar et al., Phys.Rev.D 99 (2019) 9, 094010

Up to my knowledge, no equivalent of the tWTIs have been derived

Extension to QCD relies on progresses on the gauge constraints on the
3-point and 4-point functions entering the gap equations.
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Thank you for your attention
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