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PART I

ELECTROMAGNETISM





CHAPTER 1

EXERCISES

EXERCISES

1 (Easy) Two infinite parallel planes carry equal but opposite uniform charge densities
±σ. Find the field in each of the three regions: (i) to the left of both. (ii) between them, (iii)
to the right of both.

2 (Medium) A toroidal coil with a very large number N of turns is uniformly wound on a
nonmagnetic core of square cross section with sides of length a. The inner and outer radii
are ρ1 and ρ2 and the coil carries a current I.

Figure 1.1 Exercise 2
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4 EXERCISES

a) Show that the magnetic field ®B both inside and outside the toroid has only an
azimuthal component, i.e., Bz = Bρ ≡ 0 for two components of the field in
cylindrical coordinates (ρ, φ, z) measured from the center of the toroid.

b) Derive an expressions for Bφ (both inside and outside the toroid) as a function of
ρ.

c) Determine the self-inductance of the toroid.

3 (Medium) A long coaxial cable carries current I. The current flows down the surface
of the inner cylinder (radius a), and back along the outer cylinder, radius b.

Figure 1.2 Exercise 3

a) Find the magnetic energy stored in a section of the cable of length L.
b) If the current now becomes an alternating current I = I0 cos(ωt), explain why

there will be an induced electric field in the longitudinal direction, pointing along
the axis of the cylinders.

c) Assuming that the induced electric field goes to zero as r → ∞, find E(r, t),
where r is the perpendicular distance from the axis.

d) Find the magnetic field component that has an amplitude which increases in
proportion to the square of the frequency ω. Do not evaluate any nontrivial
integrals.

4 (Medium) An infinite grounded conducting plate covers the xy plane. A thin insulated
rod of length L made of non-conducting material lies on the z axis. The rod extends from
z = D to z = D + L. A charge Q is uniformly distributed along the rod.

a) Determine the surface charge density distribution induced on the conducting plate
by the charge Q. Write your answer as a function of the variables ρ =

√
x2 + y2

and φ = arctan(y/x).
b) What is the total charge induced on the plate?
c) What is the electrostatic force on the rod due to the grounded plate?

5 (Medium) The vector potential ®A at point P due to an infinitesimal wire of length dl
carrying a current I and located at the origin is

®Ainf =
µ0I
4π

d®l
r
.

a) What is the vector potential ®A at point P due to a sinusoidally oscillating electric
dipole of length s, oriented along the z axis, and with end charge and alternating
current given by



EXERCISES 5

Figure 1.3 Figure of Exercise 4

Figure 1.4 Figure of Exercise 5

Assume that the distance from the origin to the point P is much greater than
the dipole size (r � s), and remember to take into account the finite travel time
of light signals.

b) Derive the magnetic field intensity ®B. (Hint: use Cartesian coordinates.)
c) Assume that the average radiated power Sav is proportional to B2. How does it

vary with r, θ at large distance?

6 (Medium) Two straight lines of length L are separated by a distance d (� L). They
carry equal and opposite static charges of Q and −Q.

a) Find the direction and magnitude of the electric field at a point midway between
the two lines. Neglect edge effects.

b) If an observer O is moving with velocity ®v (� c) parallel to the lines, what are
the directions and magnitudes of the electric and magnetic fields observed in the
rest frame of O?

7 (Medium) A charge q is placed adjacent to two infinite grounded conducting planes as
shown below.

a) Determine the electrostatic potential everywhere in the first quadrant.
b) Determine the work needed to bring q to (a,a) from infinity.
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Figure 1.5 Figure of Exercise 6

Figure 1.6 Figure of Exercise 7

c) Determine the force on the charge q.

8 (Medium) Electrons undergoing cyclotron motion can be accelerated by increasing the
magnetic field intensity with time — thus the induced electric field will impart a tangential
acceleration. We require the radius of the electron’s orbit to be kept constant during the
process. This is the principle of the betatron accelerator.
Show that this can be achieved by designing a magnet such that the average B over the area
of the orbit is twice the field B at the circumference.
Assume the electrons start from rest when B = 0, and the apparatus is symmetric about
the z-axis. Treat the problem non-relativistically. You may assume that the electron orbit
is in the xy plane of the magnet gap (θ = π/2) oriented perpendicular to the applied
magnetic field. Also, assume that the magnitude of the magnetic field in this plane has no
φ dependence — only a radial dependence.

9 (Medium) In a perfect conductor, the conductivity is infinite, so ®E = 0 inside the
conductor and any net charge resides on the surface.

a) What is the temporal behavior of the magnetic field inside a perfect conductor?
What is the temporal behavior of the magnetic flux through a surface bound by a
loop made of a perfectly conducting material?

A superconductor is a perfect conductor with the additional property that no
magnetic field can exist inside the conductor.
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b) Show that the current in a superconductor is confined to the surface.

The phenomenon of superconductor levitation, such as suspension of a small
magnet in the air above a superconductor, can be analyzed using the imagemethod
by simplifying the system: (i) approximate themagnet by a perfectmagnetic dipole

moment ®m = m
®r
|®r |

located at ®r = (0,0, h). (h > 0) (ii) suppose that the space z ≤ 0
is filled with superconducting material. Then replace the whole superconducting
material by an image magnetic dipole ®m′ of the same magnitude as ®m but located
at (0,0,−h).

c) Which way should the image magnetic dipole point +ẑ or −ẑ? Verify the super-
conducting boundary condition ẑ · ®B(x, y,0).

d) The force on the original magnetic dipole ®m by the superconducting material is
just the force due to the magnetic field produced by the image dipole. Calculate
this force.

e) Let M be the mass of the magnet. Determine the height h at which the magnet
will float.

10 (Hard) A box is made up of six metal plates. The plates at x = 0, y = 0, z = 0, x = a,
and y = a are grounded (Φ = 0). The metal plate at z = a, insulated from the others, is
held at a constant potential Φ0 , 0. Find the potential Φ(x, y, z) inside the box.

11 (Hard) The potential on the surface of a spherical shell of radius R is specified to be
V(θ) = k(3 cos2 θ − 1), where k is a constant. Assume that there are no charges anywhere
except on the surface of the shell, and that V → 0 as r →∞.

a) Find the potential inside the shell.
b) Find the potential outside the shell.
c) Find the surface charge density σ(θ) on the shell.

12 (Medium) In solids, the individual atomic dipoles are also able to contribute to the
local field, and thus the local field may not necessarily the same as the external field. Let
us assume that all the dipoles, which are distributed in a simple cubic lattice, are parallel to
the external field.

(a) Show that the field at the center of an imaginary sphere is given by

Esphere =
1

4πε0

∑
j

pj

3z2
j − r2

j

r5
j

, (1.1)

where pj is the dipole moment of atom j. The center of the dipole is excluded in the
summation.

(b) Show that Esphere is 0 when the dipole moments are all identical.
(c) Show that the surface charge density is given as −P cos θ, where θ is an angle from

the z axis.
(d) Show that the field at the center of the sphere generated by the material outside the

spherical surface equals to −P/3ε0.
(e) Derive the Clausius-Mossotti relationship:

εr − 1
εr + 2

=
N χ

3
, (1.2)
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where εr is the relative dielectric constant, N is the number of atoms per unit volume, and
χ is the electric susceptibility per atom. You may use the following equations.

Elocal = E +
P

3ε0
(1.3)

P = Nε0 χElocal (1.4)
P = (εr − 1)ε0E (1.5)

13 (Medium) Forced oscillations of the atomic dipole are induced by the electric field
of the light wave. If the motion of the nucleus is ignored, then the displacement (x) of the
electron is described by the following equation of motion:

m0
d2x
dt2 + m0γ

dx
dt
+ m0ω

2
0 x = −eE, (1.6)

where γ is the damping rate, e is the electric charge of the electron, and E is the electric
field of the light wave.

(a) What is the physical meaning of each term?
(b) Assume that the light wave is monochromatic of angular frequency ω.

E(t) = E0 Re
(
exp−i(ωt+φ)

)
, (1.7)

where E0 is the amplitude of the wave and φ is the phase. By letting that the position of
electron also has a similar form, obtain the maximum displacement of an electron.

(c) If there are N number of atoms per unit volume, obtain the resonant polarizations
per volume.

(d) The electric displacement D of the isotropic medium is given as

D = ε0E + P = ε0E + ε0 χE + Presonant = ε0εrE, (1.8)

where P is the polarization, χ is the electric susceptibility, Presonant is the resonant term of
the polarization, and εr is the relative dielectric constant. Obtain εr .

(e) Obtain the real part of εr at ω = 0 and ω = ∞.
(f) Draw the real part and the imaginary part of εr .

14 (Easy) The Kramers-Kronig relationships explains the relation between the real and
imaginary part of the refractive index.

n(ω) − 1 =
2
π

P
∫ ∞

0

ω′κ(ω′)

ω′2 − ω2 dω′ (1.9)

κ(ω) = −
2
πω

P
∫ ∞

0

ω′2[n(ω′) − 1]
ω′2 − ω2 dω′, (1.10)

where n and κ are the real and the imaginary part of the refractive index, respectively. ω is
the angular frequency.

Assume that κ equals to a constant value κ0 if ω is in between ω1 and ω2 and 0 for
otherwise. ω2 is larger than ω1, and their difference is much smaller than ω1.

(a) Schematically draw κ. (b) Obtain n(0). (c) n(∞).

15 (Medium) A parallel-plate capacitor of plate separation d has the region between its
plates filled by a block of solid dielectric of permittivity ε . The dimensions of each plate
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Figure 1.7 Dielectric slab partially withdrawn from between two charged plates

are length l, width w. The plates are maintained at the constant potential difference ∆φ.
If the dielectric block is withdrawn along the l dimension until only the length x remains
between the plates (Fig. 1.7), calculate the force tending to pull the block back into place.

16 (Hard) Consider a sphere of linear magnetic material of radius a and permeability
µ placed in a region of a space containing an initially uniform magnetic field, B0. We
should like to determine how the magnetic is modified by the presence of the sphere and,
in particular, to determine the magnetic field in the sphere itself.





CHAPTER 2

PREVIOUS TEST PROBLEMS

This chapter collects the previous test problems since 2008. Some questionsmay bemissing.
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12 PREVIOUS TEST PROBLEMS

2.1 Fall 2020

PROBLEMS

1 A point charge q is located at the center of a grounded conducting cube defined by the
surfaces x = a, y = a, z = a.

a) Find the potential in terms of rectangular coordinates.
b) Find the charge density at the center of top face
c) Instead of a point charge, if two charges ±q, situated symmetrically with respect

to the center of cube, are placed along the z direction and are separated by a
distance d, how would the result change (d > a)?

Hint: Use the result of subsection 3.12 (Eigenfunction Expansions for Greeen
Functions) of Jackson’s book and the expansion of Green function (of rectangular
box defined by the six planes x = 0, y = 0, z = 0, x = a, y = b, z = c) is

G(x,x′) =
32
πabc

∞∑
l,m,n=1

sin
(
lπx
a

)
sin

(
lπx′

a

)
sin

(mπy
b

)
sin

(
mπy′

b

)
sin

(
nπz
c

)
sin

(
nπz′

c

)
l2

a2 +
m2

b2 +
n2

c2

2.2 Spring 2020

PROBLEMS

1 The expansion of the Green function for a spherical shell bounded by r = a and
r = b(≥ a) is given by

G(x,x′) = 4π
∞∑
l=0

l∑
m=−l

Y ∗
lm
(θ ′, φ′)Ylm(θ, φ)

(2l + 1)
[
1 −

(
a
b

)2l+1
] (

r l< −
a2l+1

r l+1
<

) (
1

r l+1
>

−
r l>

b2l+1

)
.

The variable x′ refers to the location P′ of the unit source, while the variable x is the point
P at which the potential is being evaluated. The general solution to the Poisson equation
with speicified values of the potential on the boundary surface is

Φ(x) =
1

4πε0

∫
V

ρ(x′)GD(x,x
′) d3x ′ −

1
4π

∮
S

Φ(x′)
∂GD

∂n′
da′.

a) Let us consider an example of a hollow grounded sphere of radius b with a
concentric ring of charge of radius a and total charge Q. The ring of charge is
located in the xy plane. Draw this ring (of charge of radius a and total charge Q
inside a grounded conducting sphere of radius b) and the sphere in xyz space.

b) Express the charge density of the ring with the help of delta function in angle and
radius.

c) Find the electric scalar potential in terms of infinite sum.
d) In the limit b→∞, obtain the result of c) for a ring of charge.
e) Describe the alternative method for the c) with the help of the result of d).

2.3 Fall 2019
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PROBLEMS

1 For Dirichlet boundary conditions on the sphere of radius a, the Green function for a
unit source and its image is given by

G(x,x′) =
1

|x − x′ |
−

a

x ′ |x − a2

x′2
x′ |

.

The variable x ′ refers to the location P′ of the unit source, while the variable x is the point
P at which the potential is being evaluated.

a) Express this Green function in terms of x, x ′, γ and a. Note that γ is the angle
between x and x′. The symmetry in the variables x and x′ is obvious in this
result, as is the condition that G = 0 if either x or x′ is on the surface of the
sphere.

b) For solution

Φ(x) =
1

4πε0

∫
V

ρ(x′)GD(x,x
′) d3x ′ −

1
4π

∮
S

Φ(x′)
∂GD

∂n′
da′,

of the Poisson equation, we need not only G, but also ∂G
∂n′ . Express

∂G
∂n′

��
x′=a

in
terms of x, a and γ.

c) Hence, the solution of the Laplace equation outside of a sphere with the potential
specified on its surface can be written explicitly. Express Φ(x).

d) As an application of c), we consider that the upper hemisphere of a conducting
sphere (radius a) is set to have an uniform potential V and the lower hemisphere
is grounded. Find the potential on a point along the negative z-axis in terms of z,
a and V .

2.4 Spring 2019

PROBLEMS

1 [60 pts] A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b,
by linear dielectric material of permittivity ε and susceptibility χe.

Figure 2.1 Problem 1 of the test at Fall 2019.

a) (20 pts) Calculate the ®D and ®E for regions of r < a, a < r < b, and r > b.
b) (20 pts) Calculate the potential at the center.
c) (20 pts) Find the energy of this configuration.
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2 [20 pts] A steady current I flows down a long cylindrical wire of radius a. Find the
magnetic field, both inside and outside the wire, if the current is distributed in such a way
that J is proportional to s, the distance from the axis.

Figure 2.2 Problem 2 of the test at Fall 2019.

3 [20 pts] A metal bar of mass m slides frictionlessly on two parallel conducting rails a
distance l apart. A resistor R is connected across the rails and a uniform magnetic field B,
pointing into the page, fills the entire region.

Figure 2.3 Problem 3 of the test at Fall 2019.

a) If the bar moves to the right at speed v, what is the current in the resistor?
b) If the bar starts out with speed v0 at time t = 0, and is left to slide, what is its

speed at later time t?

2.5 Fall 2018

PROBLEMS

1 [50 pts] A long coaxial cable carries a uniform volume charge density ρ on the inner
cylinder (radius a), and a uniform surface charge density on the outer cylindrical shell
(radius b). This surface charge is negative and of just the right magnitude so that the cable
as a whole is electrically neutral.

Figure 2.4 Problem 1 of the test at Fall 2018.
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a) (30 pts) Find the electric field in each of the three regions: (i) inside the inner
cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable
(s > b).

b) (10 pts) Plot E as a function of s.
c) (10 pts) Find the potential difference between a point on the inner cylinder and a

point on the outer cylinder.

2 [30 pts] Three charges are situated at the center of a rectangular shape as shown in the
figure.

Figure 2.5 Problem 2 of the test at Fall 2018.

a) . (10 pts) Calculate the electric field in the point P due to three charges.
b) (10 pts) How much work does it take to bring in another charge q4 = −q and

place it in point P.
c) (10 pts) How much work does it take to assemble the whole configuration of four

charges? The charges in the figure are q1 = +q, q2 = +2q, and q3 = −2q.

3 [20 pts] A metal sphere of radius R, carrying charge q, is surrounded by a thick
concentric metal shell (inner radius a, outer radius b). The shell carries no net charge. The
outer surface of the metal shell is connected to a grounding wire.

Figure 2.6 Problem 3 of the test at Fall 2018.

a) Find the surface charge density σ at R, at a, and at b.
b) Find the potential at the center, using infinity as the reference point.
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2.6 Spring 2018

◦ Solve 2 problems only out of 3 problems. (Don’t solve 3 problems)
◦ Describe details of your solution as well as physical meaning.

PROBLEMS

1 Consider circular metal plate with radius R and surface charge density σ.

Figure 2.7 Problem 1 of the test at Spring 2018.

a) [20 pts] Determine electric field E(z) as a function of z using Coulomb’s law.
b) [20 pts] Determine electrostatic potentialV(z) as a function of z using Coulomb’s

law.
c) [10 pts] Calculate electric field ®E(z) through the resultant of b) again. Compare

electric field with a).

2 Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral)
conducting sphere of radius R. At the center of each cavity a point charge is placed - call
these charges qa and qb .

Figure 2.8 Problem 2 of the test at Spring 2018.

a) . [15 pts] Find the surface charges σa, σb
, and σR.

b) [10 pts] What is the electric field outside the conductor?
c) [15 pts] What is the electric field within each cavity?
d) [10 pts] What is the force on qa and qb?

3 The volume between two concentric conducting spherical surfaces of radii a and b
(a < b) is filled with an inhomogeneous dielectric constant εr , where K and ε0 are constant
and permittivity in air, respectively.

Thus, ®D(r) = ε ®E(r). A charge Q is placed on the inner surface, while the outer surface
is grounded.
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Figure 2.9 Problem 3 of the test at Spring 2018.

a) [10 pts] Find the electrical displacement ( ®D(r)) using Coulomb’s law in the region
a < r < b.

b) [20 pts] Calculate the capacitance of the device.
c) [10 pts] Calculate the polarization (bounded) charge density (ρb) in a < r < b.
d) [10 pts] Calculate the surface polarization (bounded) charge density (σb) at r = a,

r = b.

Usefule expression:

1 Gauss’s law:
∮
S

®Er · d ®a =
1
ε0

∫
V

ρ dv

2. Spherical coordinate:

d®l = dr r̂ + rdθ θ̂ + r sin θdφφ̂

da = r2 sin θ dθ dφ, dv = r2 sin θ dr dθ dφ

∇ f =
∂ f
∂r

r̂ +
1
r
∂ f
∂θ

θ̂ +
1

r sin θ
∂ f
∂φ

φ̂

∇2 f =
1
r2

∂

∂r

(
r2 ∂ f
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
r2 sin θ

∂2 f
∂φ2

∇ · ®v =
1
r2

∂

∂r

(
r2vr

)
+

1
r sin θ

∂

∂θ

(
sin θvθ

)
+

1
r sin θ

∂vφ

∂φ

2.7 Fall 2017

Total 100 point = 80 point required + 20 point choice (choose 1 problem)

PROBLEMS

1 A spherical charge distribution (dielectricmaterial) has a volume charge density that is
a function only of r , the distance from the center of the distribution. In other words, ρ = ρ(r).
If ρ(r) is as given below, determine the electric field as a function of r . Integrate the result
to obtain an expression for the electrostatic potential V(r), subject to the restriction that
V(∞) = 0.
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Figure 2.10 Problem 1 of the test at Fall 2017.

a) [20 pts]

ρ = ρ0 (i.e., constant) for 0 ≤ r ≤ R,

ρ = 0 for r > R

b) (Choice 1) [20 pts]

ρ = A/r (A is a constant) for 0 ≤ r ≤ R,

ρ = 0 for r > R

c) [20 pts] Suppose that a sphere is metal, calculate electrical field and electrostatic
potential as a function of r .

σ = σ0 (i.e., constant) for 0 ≤ r ≤ R,

σ = 0 for r > R

2
a) [20 pts] H is magnetic field and B = µ0(H +M ) is magnetic induction. D =

ε0E+P is electrical displacement.Write theMaxwell equations in differential form
inside materials including P (polarization), M (magnetiztion), and J (current
density).

b) [20 pts] Derive wave equation in free space using Maxwell equations.
c) (Choice 2) [20 pts] Derive wave equation in conducting media (J = σ

1−iωτE)
using Maxwell equations. Calculate the skin depth of metal when the light with
long wavelength propagate to the metal.

Usefule expression:

1 Gauss’s law:
∮
S

®Er · d ®a =
1
ε0

∫
V

ρ dv

2. Spherical coordinate: da = r2 sin θ dθ dφ, dv = r2 sin θ dr dθ dφ

2.8 Spring 2017
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PROBLEMS

1 (50 pts) Electrons undergoing cyclotron motion can be accelerated by increasing the
magnetic field intensity with time — thus the induced electric field will impart a tangential
acceleration. We require the radius of the electron’s orbit to be kept constant during the
process. This is the principle of the betatron accelerator.

Show that this can be achieved by designing a magnet such that the average B over the
area of the orbit is twice the field B at the circumference.

Assume the electrons start from rest when B = 0, and the apparatus is symmetric about
the z-axis. Treat the problem non-relativistically. You may assume that the electron orbit
is in the x-y plane of the magnet gap (θ = π/2) oriented perpendicular to the applied
magnetic field. Also, assume that the magnitude of the magnetic field in this plane has no
φ dependence—only a radial dependence.

2 (50 pts) A box is made up of six metal plates. The plates at x = 0, y = 0, z = 0, x = a,
and y = a are grounded (Φ = 0). The metal plate at z = a, insulated from the others, is
held at a constant potential Φ0 , 0. Find the potential Φ(x, y, z) inside the box.

2.9 Fall 2016

PROBLEMS

1 (30 pts) A cylindrical conductor of radius a and current I has a hole of radius b parallel
to, and centered a distance d from the cylinder axis (d + b < a). The current density is
uniform throughout the remaining metal of the cylinder and is parallel to the axis.

Figure 2.11 Problem 1 of the test at Fall 2016.

Find the magnitude and direction of the magnetic field inside the hole.

2 (30 pts) In this problem we use a quantum mechanical setting to explore classical
electrostatics. A neutral “hydrogen atom” in its ground state has a shell-electron for which
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the charge density can be described by:

ρe(r) = −
e
πa3 exp (−2r/a) ,

e = electron charge,
r = distance between electron and proton,
a = Bohr radius.

The proton is taken to be a point charge situated at the origin of a coordinate system. Under
the influence of a constant external electric field ®E0, the electron and its charge density
distribution shift rigidly (without deformation) with respect to the proton by a vector ®r0.
The proton can be assumed to remain fixed.

a) Write the expression for the total (i.e., positive and negative) charge density of the
hydrogen atomwithout andwith external field. (Help: a coordinate transformation
from ®r = ®r ′ + ®r0 will be useful.)

b) Calculate the dipole moment ®p of the hydrogen atom as a function of ®r0 in the
presence of the external field ®E0.

c) Calculate the electrostatic force between the proton and the electron charge dis-
tribution under the influence of the external field ®E0.

3 (40 pts) A charge q is placed adjacent to two infinite grounded conducting planes as
shown.

Figure 2.12 Problem 3 of the test at Fall 2016.

a) Determine the electrostatic potential everywhere in the first quadrant.
b) Determine the work needed to bring q to (a,a) from infinity.
c) Determine the force on the charge q.

2.10 Spring 2016

PROBLEMS

1 (40 pts) A long circular cylinder of radius R carries a magnetization ®M = ks2φ̂, where
k is a constant, s is the distance from the axis, and φ̂ is the usual azimuthal unit vector. Find
the magnetic field due to ®M , for points (a) inside and (b) outside the cylinder.

Solve two of the following problems
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Figure 2.13 Problem 1 of the test at Spring 2016.

2 (30 pts) Two concentric metal spherical shells, of radius a and b, respectively, are
separated by weakly conducting material of conductivity σ.

a) If they are maintained at a potential difference V , what current flows from one to
the other?

b) What is the resistance between the shells?

Figure 2.14 Problem 2 of the test at Spring 2016.
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3 (30 pts)
a) Calculate the magnetic dipole moments for the square loop and for the circular

loop, respectively.
b) Calculate the torque exerted on the square loop due to the circular loop (assume

r is much larger than a or b).
c) Calculate the energy of two magnetic dipoles separated by a displacement r .

Figure 2.15 Problem 3 of the test at Spring 2016.

4 (30 pts) A coaxial cable consists of two very long cylindrical tubes, separated by
linear insulating material of magnetic suscepptibility χm. A current I flows down the
inner conductor and returns along the outer one; in each case the current distributes itself
uniformly over the surface.

a) Find the magnetic field in the region between the tubes.
b) Calculate the magnetization in the region between the tubes.
c) Calculate the bound currents ®Jb and ®Kb in the region between the tubes.

Figure 2.16 Problem 4 of the test at Spring 2016.



FALL 2015 23

2.11 Fall 2015

PROBLEMS

1 (20 pts) A long circular cylinder of radius R carries a magnetization ®M = ks2φ̂, where
k is a constant, s is the distance from the axis, and φ̂ is the usual azimuthal unit vector. Find
the magnetic field due to ®M , for points (a) inside and (b) outside the cylinder.

Figure 2.17 Problem 1 of the test at Fall 2015.

Solve two of the following problems

2 (40 pts) Suppose

®E(r, θ, φ, t) = A
sin θ

r

[
cos(kr − ωt) −

1
kr

sin(kr − ωt)
]
φ̂,

with
ω

k
= c.

a) Find the associate magnetic field by using the Maxwell’s equation.
b) Calculate the Poynting vector ®S.
c) Average ®S over a full cycle to get the intensity vector ®I.
d) Integrate ®I · d ®a over a spherical surface to determine the total power radiated.
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3 (40 pts) Two concentric metal spherical shells, of radius a and b, respectively, are
separated by weakly conducting material of conductivity σ.

a) If they are maintained at a potential difference V , what current flows from one to
the other?

b) What is the resistance between the shells?

Figure 2.18 Problem 3 of the test at Fall 2015.

4 (40 pts)
a) Calculate the magnetic dipole moments for the square loop and for the circular

loop, respectively.
b) Calculate the torque exerted on the square loop due to the circular loop (assume

r is much larger than a or b).
c) Calculate the energy of two magnetic dipoles separated by a displacement r .

Figure 2.19 Problem 4 of the test at Fall 2015.

5 (40 pts) A coaxial cable consists of two very long cylindrical tubes, separated by
linear insulating material of magnetic suscepptibility χm. A current I flows down the
inner conductor and returns along the outer one; in each case the current distributes itself
uniformly over the surface.

a) Find the magnetic field in the region between the tubes.
b) Calculate the magnetization in the region between the tubes.
c) Calculate the bound currents ®Jb and ®Kb in the region between the tubes.
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Figure 2.20 Problem 5 of the test at Fall 2015.

2.12 Spring 2015

PROBLEMS

RChoose two problems out of the 6 in sectionA and choose one problem
in section B.
R Unless therwise stated, you will be graded on the quality of your

explanation. Please be brief but clear!
R If you need more room, use the back of the pages (or staple extrapages

to the exam).
R Just BE SURE TO INDICATE CLEARLY that your work is contin-

ued, (and where) if you need more room than the problem page itself.

f Section A: Choose two problems out of the 6 in section A.

1 (40 pts) You have a spherical shell (radius R) which has been covered by some surface
charge distribution σ(θ). The potential everywhere is given by

Outside shell : Vout(r, θ) =
( c
r2

)
cos θ,

Inside shell : Vin(r, θ) =
(V0r

R

)
cos θ.

a) (10 pts) Given these two formulas, I claim the constant “c” in Vout(r, θ) can be
immediately deduced. Tell me what c is, and how you know.

b) (15 pts) Find the surface charge density σ(θ) on the shell. (Briefly show/explain
your work. Please be explicit about your reasoning here.)
NOTE: If you can’t get part a), that’s no problem. I’m mostly just looking for
method here!

c) (15 pts) Find the electric field inside. I just want a formula. (You do NOT need
part b) for this at all!)

Useful dielectric relations I sometimes forget:

®D = ε0
®E + ®P

Linear dielectrics: ®P = χeε0
®E, or if you prefer, ®D = ε ®Dε0εr

®E,

where the dielectric constant and permittivity are related by εr = 1 + χ2.
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2 (50 pts) A metal (conducting) sphere of radius “a” has total negative charge +Q placed
to it. (The solid interior of this solid metal sphere is labeled region I.) Outside of it (region
III) is a solid, neutral, linear dielectric shell. That shell is hollow, it he EMPTY region of
space between the conductor and the dielectric is labeled region II (a < r < b), The solid
dielectric (region III) has dielectric constant εr , which extends from b < r < c.

Figure 2.21 Problem 2 of the test at Spring 2015.

a) (20 pts) Find the electric field “E” and the electric displacement “D” field every-
where in space. (be explicit, what are they in each of regions I, II, III, and IV in
the figure?)

b) (10 pts) If there were NO dielectric shell (or put another way, if εr = 1 in region
III), the voltage at the origin (with respect to infinity) would be V0. With the
dielectric shell present, how would the voltage at the origin compared with V0
(clearly choose one!)

A) V(origin, with dielectric present) > V0
B) V(origin, with dielectric present) < V0
C) V(origin, with dielectric present) = V0
D) Not enough information
Briefly, justify your answer mathematically:

c) (10 pts) Going back to part a), find a formula for the surface bound charge density
σB (magnitude and sign) on the inner surface of the plastic sphere, i.e., at r = b?
(Give your answer only in terms of given constants: namely Q, εr and the given
radii.)
If you couldn’t solve part a), just clearly explain in detail what procedure you
would follow: What would you need, how would you proceed?

Let’s do some explicit check of part c). (If you could not get an answer above,
you can still get lots of partial credit by explaining clearly what you expect fir
these check)

d) (2 pts) Check the units of your symbolic answer to part c). (what should it be)
e) (3 pts) Consider the limit εr → 1: what do you expect the answer for σB should

approach, and what does your result above give you?
f) (5 pts) Consider the limit εr →∞: what do you expect the answer for σB should

approach, and what does your result above give you?

3 (40 pts) A charge+q is located midway between 2 infinitely wide, grounded conducting
planes. We want to find the voltage V(r) everywhere in space. A friend has proposed using
the method of images, their idea is to put two images charges into the problem:

• a negative charge (−q) located a distance d above the base of the upper plate,
• and, a second (negative) charge −q a distance d below the top of the lower plate.
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Figure 2.22 Problem 3 of the test at Spring 2015.

a) (10 pts) ASSUMING for the moment their proposed method will work, write
down the simple resulting formula for the voltage at a point ®r = (x, y, z) imply.
(Note where the origin is located in the figure!)

b) (10 pts) Comment on whether this solution method is correct or incorrect. (If
correct, justify the method briefly. If incorrect, what’s the problem?)

c) (10 pts) Where in all of space (if anywhere) is V discontinuous in this problem?
(Note: you do not need to have solved either of the previous parts to answer this
or the next question!)

d) (10 pts) Where in all of space (if anywhere) is the divergence of ®E zero in this
problem?

4 (50 pts) You have a cubical box (sides all of length a) made of 6 metal plates which are
insulated from each other.

The left wall at y = 0 is held at constant potential V = −V0. The right wall at y = a
is held at constant potential V = V0. All four other walls are grounded, V = 0. We might
want to find the voltage V(r) everywhere inside the cube, but you do NOT have to solve
for voltage in this problem!! Just read the questions and answer only what I ask.

a) (20 pts) Use the method of separation of variables to separate Laplace’s equation
into three ordinary differential equations, one that depends only on x, one that
depends only on y, and one only on z. Show and briefly/clearly explain all your
work. You do NOT need to SOLVE these equations!

Figure 2.23 Problem 4 of the test at Spring 2015.

b) (15 pts) The 3 equations above should contain some not-yet-determined constants.
Given the boundary conditions above:

- what if anything, can you tell me about the SIGNS of all three constants?
- what, if anything, can you tell about any relationship among the three con-

stants?
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(or are they all completely unrelated to one another?) Briefly, explain.
c) (15 pts) Suppose I change the previous problem so that ALL SIX sides have the

same constant voltage V0 (none are grounded) What is the potential at the very
center of the cube? Briefly but clearly justify/explain your reasoning!

Figure 2.24 Problem 4c) of the test at Spring 2015.

5 (45 pts) Consider a long straight coaxial cable consisting of an inner cylindrical con-
ductor of radius a carrying a uniform current I in the +z direction and an outer very thin
cylindrical conductor of inner radius b carrying a uniform return current of the same mag-
nitude I in the ˘z direction. The space between the conductors (a < s < b) is filled with a
linear paramagnetic material with magnetic susceptibility χm.

Figure 2.25 Problem 5 of the test at Spring 2015.

a) (5 pts) What are the SI metric units of the ®H field?
b) (10 pts) Solve for the ®H-field for a < s < b, i.e. between the inner and outer

conductors (direction and magnitude).
c) (10 pts) Solve for the magnetic field ®B between the inner and outer conductors

(direction and magnitude).
d) (10 pts) Solve for any bound currents (surface, or volume). Indicate clearly the

direction of any bound currents, keeping in mind that the material is paramag-
netic.

e) (10 pts) Briefly, comment on why the direction of the bound currents in part d)
makes sense physically, given that the material is paramagnetic.

6 Consider an infinitesimally thin charged disk of radius R and uniform surface charge
density σ that is in the xy plane centered on the origin.
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a) (15 pts) Calculate the potential along the z axis from Coulomb’s law.
b) (25 pts) Calculate themonopolemoment, dipolemoment and quadrupolemoment

of the disk. These are defined as

Q =

∫
d3rρ(r),

®P =

∫
d3rρ(r)®r,

Qi j =

∫
d3rρ(r)

[
3rirj − r2δi j

]
.

f Section B: Choose one problem out of the 4 in section B.

1 (10 pts) A rectangular copper strip 1.5 cm wide and 0.10 cm thick carries a current
of 5.0 A. A 1.2 T magnetic field is applied perpendicular to the strip. Find the resulting
Hall voltage. The molar mass of copper is 63.5 g, and the density of copper is 8.95 g/cm3.
Assume each copper atom contributes on free electron to the body of the material.

2 (10 pts) Consider a set of 12 identical capacitors, each of capacitance C. As shown in
the figure below, they are connected together such that they form the geometry of a cube.
Find the equivalent total capacitance of this arrangement, as measured between points
diagonally opposite one another (e.g., measured between the lower left point on the figure
and the upper right point).

Figure 2.26 Problem 2 of the test (Section B) at Spring 2015.

3 (10 pts) Starting from the basic definition of magnetic vector potential ®A, show that∮
®A·d ®̀= ΦM (in words: that the line integral of the magnetic vector potential ®A around any

closed loop is always given by the total magnetic flux through the loop enclosed) Explain
your steps, briefly but clearly.

4 (10 pts) You have a sheet with a uniform (positive) surface charge density. The sheet
lies in the xy plane (perpendicular to the plane of this page, it is shown in perspective).
There are lots of OTHER charges just out of the picture (not shown!) contributing to the ®E
field. At a point P1 just (infinitesimally) below this sheet, the electric field is ®E = E0 x̂. The
numerical values of σ and E0 are given by σ/ε0 = 3 N/C and E0 = 4 N/C. What is the
electric field at point P2 just above the sheet (infinitesimally above point P1?) (Note: ®E is a
vector, so I either need components, or a magnitude and direction!)
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Figure 2.27 Problem 4 of the test (Section B) at Spring 2015.

2.13 Fall 2014

PROBLEMS

A. Solve one of the following problems

1 (50 pts) A long coaxial cable carries a uniform volume charge density ρ on the inner
cylinder (radius a), and a uniform surface charge density on the outer cylindrical shell
(radius b). This surface charge is negative and of just the right magnitude so that the cable
as a whole is electrically neutral.

Figure 2.28 Problem 1 of the test (Section A) at Fall 2014.

a) (15 pts) Find the electric field in each of the three regions: (i) inside the inner
cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable
(s > b).

b) (5 pts) Plot E as a function of s.
c) (10 pts) Find the potential difference between a point on the inner cylinder and a

point on the outer cylinder.
d) (10 pts) Find the capacitance per unit length of two coaxial cylinders.
e) (10 pts) Find the energy stored in the gap between the inner and the outer cylinder.

2 (40 pts) A metal sphere of radius R, carrying charge q, is surrounded by a thick
concentric metal shell (inner radius a, outer radius b). The shell carries no net charge.

a) (10 pts) Find the surface charge density σ at R, at a, and at b.
b) (20 pts) Find the electric field (i) r > b, (ii) a < r < b, (iii) R < r < a, and (iv)

r < R.
c) (5 pts) Find the potential at the center, using infinity as the reference point.
d) (5 pts) Find the capacitance for this capacitor.
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Figure 2.29 Problem 2 of the test (Section A) at Fall 2014.

3 (60 pts) A metal sphere of radius a carries a charge Q. It is surrounded by linear
dielectric material of susceptibility χ2, out to radius b.

Figure 2.30 Problem 3 of the test (Section A) at Fall 2014.

a) Find the electric field at r for a < r < b.
b) Find the electric field at r for r > b.
c) Find the potential at the center (relative to infinity).
d) Find the polarization in the dielectric.
e) Find the bound charge density (ρb, σb) in the dielectric.
f) Find the energy of this configuration.

4 (50 pts) The space between the plates of a parallel-plate capacitor is filled with two
slabs of linear dielectric material. Each slab has thickness a, so the total distance between
the plates is 2a, Slab 1 has a dielectric constant of 0.1, and slab 2 has a dielectric constant
of 1. The free charge density on the top plate is σ and on the bottom plate −σ.

Figure 2.31 Problem 4 of the test (Section A) at Fall 2014.

(a) Find the electric displacement D in each slab. (b) Find the electric field E in each
slab. (c) Find the polarization P in each slab. (d) Find the potential difference between the
plates. (e) Find the capacitance of this capacitor and compare the capacitance without any
dielectric material in between.
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B. Solve one of the following problems

1 (60 pts) A point charge q is situated a distance a from the center of a ground conducting
sphere of radius R.

Figure 2.32 Problem 1 of the test (Section B) at Fall 2014.

a) Find the potential at P situated a distance r from the center by using the image
method.

b) Find the electric field at P using the result of a).
c) Find the induced surface charge on the sphere, as a function of θ.
d) Find the total induced charge in the sphere.
e) Find the force between the charge and the sphere.
f) Calculate the energy of this configuration.

2 (50 pts) An uncharged metal sphere of radius R is placed in an otherwise uniform
electric field ®E = E0 ẑ.

Figure 2.33 Problem 2 of the test (Section B) at Fall 2014.

a) (30 pts) Find the potential in the region outside the sphere.
b) (10 pts) Find the induced charged density and the total induced charge in this

metal sphere.
c) (10 pts) Find the electric field in the region outside the sphere.
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2.14 Spring 2014

PROBLEMS
R Solve 2 questions only out of 3 questions. (Don’t solve 3 questions.)
R Describe details of your solution as well as physical meaning.

1 Draw triangle relation of three fundamental quantity of volume charge density ρ,
electric potential V and electric field ®E . Write down relation of them with 6 different
equations and explain each equation what it means. (For example, you can obtain ®E when
you know ρ.)

2 For the point charge Q, solve the above 6 equations. You need to use three dimensional
delta function since it is a point charge.

3 A long straight shielded cable length L (Ex: video or signal cable), carrying a line
charge density λ with radius r1 is surrounded by PMMA (Acryl) with dielectric constant of
ε and shielded with radius r2 (r2 > r1)

Figure 2.34 Problem 3 of the test at Spring 2014.

a) Write down the Gauss’s law in dielectric.
b) What is the relation between electric displacement ®D and electric field ®E inside

dielectric material?
c) Solve the equation to obtain the electric displacement ( ®D) inside PMMA (r1 <

r < r2)
d) Derive the electric potential (V) inside PMMA.
e) What is the capacitance (C) of this shielded cable?
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2.15 Fall 2013

PROBLEMS
Volume charge densityρ is given by

ρ =

{
ρ0, 0 ≤ r < a,

0, a < r .

Here r is the distance of a given point from the origin.

1 Find the electric field ®E(®r) due to this charge distribution for all ®r .
a) when |®r | = r ≥ a.
b) when |®r | = r < a.

2 Find the electric potential V(®r) due to this charge distribution for all ®r .
(Let V(|®r | → ∞) = 0)

a) when |®r | = r ≥ a.
b) when |®r | = r < a.

2.16 Spring 2013

PROBLEMS Consider a positive point change Q fixed at the origin and assume
that no other charges are around.

1 Express the electric field ®E due to the charge Q as a vector function of ®r .

2 Calculate ®∇ · ®E (the divergence of this field ®E) and express the result as a function of ®r .

3 Now we introduce a positive test charge q with mass m. We put this test charge at a
point whose coordinates are (a,0,0). The initial speed of q is zero. What will be the speed
of q when it passes the point (2a,0,0)? (Note that Q is assumed to be fixed all the time and
neglect all forces other than the Coulomb force.)
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2.17 Fall 2012

PROBLEMS
A point charge Q (Q > 0) is fixed at ®rQ.

1 Express the electric field ®E(®rp) at point ®rp (due to the point charge Q at ®rQ).

2 Express the electrostatic potential V(®rp) at a point ®rp (due to the point charge Q at ®rQ).
V(®r) is zero when |®r | is infinite.

3 Consider a test charge q (q > 0)with mass m. We put this charge q at ®rp and let it move
due to the repulsive Coulomb force (by the point charge Q at ®rQ (fixed)). Express the final
speed of the test charge in terms of q, m and V(®rp).

2.18 Spring 2012

PROBLEMS

1 Describe the Gauss’s law.

2 Consider a uniformly charged sphere with radius R. The sphere is centered at the origin
and the charge density is ρ. Calculate the magnitude of electric field at position P for the
following two cases. (Here, r is the distance between the point P and the origin. There is
no other charge around the sphere.)

a) what is | ®E | at P when 0 ≤ r < R?
b) what is | ®E | at P when r > R?
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2.19 Fall 2011

PROBLEMS

1 Derive the value of ®E (electric field) at (x0, y0, z0) due to a uniform charge density
σ > 0 on the xy plane (i.e., z = 0 plane). Assume z0 > 0)

2 For the situation of the above problem, What is the difference of potential between two
points (x1, y1, z1) and (x2, y2, z2) (with z1 > 0, z2 > 0)?

2.20 Spring 2011

PROBLEMS
Consider an infinite wire with a uniform electric charge density λ > 0.

1 Find the magnitude of the electric field at point whose distance from the wire is r .

2 Find the difference of the electrostatic potential (scalar potential) between two points,
one at r1 and the other at r2 apart from the wire.

3 A point charge q > 0 begins to accelerate from zero velocity. The distance between
the starting point and the wire is d. What is the speed of the particle when this distance is
doubled?
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2.21 Fall 2010

PROBLEMS
Consider an infinite conducting plane and a charged particle with charge q.

They are separated by a distance ` as in the figure.

Figure 2.35 Problems of the test at Fall 2010.

1 Using the image charge nethod, find the magnitude of the electric field at point A (see
the figure: just out of the surface of the plane to the direction of the charged particle.)

2 Find the electrostatic force on q due to the conducting plane.
a) magnitude?
b) is the force repulsive or attractive?
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2.22 Spring 2010

PROBLEMS
R Select three among the following five problems.

1 A nonconducting sphere of radius a has a spherical cavity of radius b located at c as
shown in the figure. The sphere of radius a contains a uniform charge density ρ and the
cavity of radius b is empty.

Figure 2.36 Problem 1 of the test at Spring 2010.

a) Find the electric field at r > a.
b) Find the electric field at any point in the cavity.

2 Suppose

®E(r, θ, φ) = A
sin θ

r

[
cos(kr − ωt) −

1
kr

sin(kr − ωt)
]
φ̂,

with ω/k = c.
a) Find the associate magnetic field by using the Maxwell’s equation.
b) Calculate the Poynting vector ®S.
c) Average ®S over a full cycle to get the intensity vector ®I.
d) Integrate

∫
®I · d ®a over a spherical surface to determine the total power radiated.

3 The potential at the surface of a sphere (radius R) is given by

V0 = k cos 3θ,

where k is a constant.
a) Find the potential inside and outside the sphere, as well as
b) the surface charge density σ(θ) on the sphere. (Assume that there is no charge

density inside or outside the sphere.)

4 Ametal sphere of radius a carries a charge Q. It is surrounded, out to radius b, by linear
dielectric material of permittivity ε. Find the potential at the center.

5 A long coaxial cable consists of two concentric cylindrical conducting sheets of radii
R1 and R2, respectively (R2 > R1). The two conductors are connected through a battery
which maintains a voltage V0 between them.

a) Calculate the electric field and
b) the potential between the cylinder (R1 < r < R2).
c) What is the surface charge density on each of the two sheets?
d) How much charge per unit length is there on each sheet? (You may assume that

the electric field is zero outside the cable.)
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Figure 2.37 Problem 4 of the test at Spring 2010.

2.23 Spring 2009

PROBLEMS
R Solve two problems out of three.
R Describe the problem solving procedure and physical meaning of the

results.

1 The field of a uniform spherical charge. Consider a spherical charge of uniform volume
charge density ρ, total charge Q and radius R.

a) Write down the Laplacian of V in (a) rectangular coordinates, (b) cylindrical
coordinates and (c) spherical coordinates.

b) Derive electric field and potential inside of sphere using the Poisson or Laplace
equation.

c) Derive electric field and potential outside of sphere using the Poisson or Laplace
equation.

2
a) Derive Green’s first identity and
b) Green’s second identity.
c) Using Green’s second identoty with φ = 1/r and Poisson’s equation, derive

electric potential Φ.
d) Explain about first, second and third terms in final equation in case of c).

3 A steady current I flows down a long cylindrical wire of radius a. The current is
distributed in such a way that J is proportional to s (the distance from the axis).

a) Find the magnetic field inside the wire.
b) Find the magnetic field outside the wire.
c) If alternative current I(t) flows instead of steady current I, which Maxwell equa-

tion needs to be applied outside of the wire? Explain why.
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2.24 Fall 2008

PROBLEMS

1 Uniformly magnetized sphere: Let us consider a sphere of radius a with a uniform
permanent magnetization ®M of magnitude M and parallel to the z axis, embedded in a
nonpermeable medium. Via the magnetic scalar potential in spherical coordinates and
surface magnetic charge density, the potential is found to be

ΦM (r, θ) =
1
3

Ma2 r<
r2
>

cos θ,

where (r<,r>) are smaller and larger of (r,a). You don’t have to prove this.
a) What is the magnetic field ®H inside the sphere?
b) What is the magnetic induction ®B inside the sphere?
c) From the expression for the potential outside the sphere, can you identify what is

the dipole moment ®m?

2 The field of a uniform spherical charge: Consider a spherical charge of uniform
volume charge density ρ, total charge Q and radius R.

a) Derive electric field ( ®E) inside of sphere using Gauss’s law.
b) Derive electric field ( ®E) inside of sphere (1) using Poisson equation.
c) Derive electric field ( ®E) outside of sphere using Gauss’s law.
d) Derive electric field ( ®E) outside of sphere (1) using Poisson equation.
e) Derive electric potential (V) from ®E inside of sphere.
f) Derive electric potential (V) from ®E outside of sphere.
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CHAPTER 3

EXERCISES

EXERCISES

1 (Easy) Obtain the expansion coefficients of a wavefunction ψ when the Hilbert space
is spanned by

a) the sequence of functions {ϕn}, and
b) the continuous set of momentum eigenfunctions.

2 (Medium) Translation operators and the fundamental commutation relations.
a) By considering an infinitesimal translation by dx′, prove the fundamental commu-

tation relation [x̂j, p̂k] = i~δjk . State all the properties of the translation operator
required in deriving the result.

b) Using the above result, derive the translation operator for a finite translation and
use the commutativity of translations in different directions to derive [p̂j, p̂k] = 0

3 Momentum operator and momentum space.
a) (Medium) Using the fact that the momentum operator is the generator of transla-

tion (in position), prove that the momentum operator acting on the wavefunction
(in the position representation) obeys p̂xψ(x) = −i~ ∂

∂x′ψ(x).
b) (Easy) Use the above result to derive the momentum eigenfunction. That is, the

momentum eigenket in the position space.
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c) (Easy) Show that the position- and momentum-space wavefunctions are related
through Fourier transformation.

4 Evaluate the following commutators.
(Easy)

a) [x̂, p̂].
b) [x̂2, p̂].
c) [x̂, p̂2].

(Medium)
d) [p̂,g(x)].
e) [p̂, x̂ f (p̂)].
f) [p̂, x̂ g(x̂)].

5 (Medium) Uncertainty relations.
a) Prove the Schwarz inequality 〈α |α〉〈β|β〉 ≥ |〈α |β〉|2.
b) Using the above inequality prove that 〈(∆A)2〉〈(∆B)2〉 ≥ 1

4 |〈[A,B]〉|
2 for ∆A ≡

A − 〈A〉 and similarly for ∆B.

6 (Easy) The time derivative of the expectation value of an observable
〈
Â
〉
is expressed

in terms of the Hamiltonian as

d
dt

〈
Â
〉
=

〈
i
~
[Ĥ, Â] +

∂ Â
∂t

〉
.

a) Derive the above expression.
b) If Â , Â(t), and Ĥ and Â commute with each other, show that

〈
Â
〉
,
〈
Â2〉, and ∆A

are constant in time.

7 (Medium) Answer the following questions for the matrix A =
©«

1 i 1
−i 0 0
1 0 0

ª®®¬ .
a) Is A Hermitian?
b) Find the eigenvalues of A.
c) Find the matrix U that diagonalizes A.
d) Show that the eigenvectors comprising U are orthonormal.
e) Carry out the matrix multiplication to verify that U−1 AU is diagonal.

8 (Easy) Normalize the wavefunction, ψ(x) = 1√
a

cos πx
2a +

2√
a

sin πx
a for −a ≤ x ≤ a

and plot its probability density function.

9 (Easy) Prove the following angular momentum commutator relations by using the basic
commutator relations [x̂, p̂] = i~ and others related to it.

a) [L̂i, L̂j] = i~εi jk L̂k (or in other words ®L × ®L = i~®L).
b) [Li, L2] = 0.
c) [Li, xk] = i~εikl xl , [Li, xj] = [xi, Lj].
d) [Li, pk] = i~εiklpl , [Li, pj] = [pi, Lj].

10 (Easy-Medium ) Establish the following properties of the Pauli spin matrices.
a) Show that the Pauli spin matrices are Hermitian.
b) σ2

x = σ
2
y = σ

2
z = I.

c) σiσj = iεi jkσk .
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d) [σi, σj] = 2iεi jkσk .
e) {σi, σj} = 0 if i , j.
f) (®σ · ®a)(®σ · ®b) = ®a · ®bI + i®σ · (®a × ®b).
g) Show that exp(i ®e · ®σφ) = (cos φ)I + i(sin φ)®e · ®σ.

11 (Easy) A spin 1/2 particle with a magnetic moment µ is placed in a magnetic field.
The Hamiltonian is H = − 2µ

~ S ·B. Find the eigenvalues and eigenstates for B = Bx x̂ + Bz ẑ.

12 Rotations in the two-component formalism
a) (Medium) Write exp

(
−i
~ S · n̂φ

)
in the 2 by 2 matrix form. n̂ is a unit vector.

b) (Easy) Use the above result to find the ket resulting from rotating the two-
component spinor χ = [α; β] (a column vector) by an angle θ around the x
axis.

c) (Easy) Now find the probability that the resulting state is found in | ↑〉, i.e. the
spin up state in the z-direction.

13 (Medium) Prove [Jx, Jy] = i~Jz by using the infinitesimal forms of rotation operators

Rx =
©«

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ª®®¬ , Ry =
©«

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

ª®®¬ , Rz =
©«

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

ª®®¬ .
14 Angular momentum eigenvalues and eigenstates

a) (Easy) Prove [J+, J−] = 2~Jz and [Jz, J±] = ±~J±.
b) (Easy) For the simultaneous eigenstates |a, b〉 such that J2 |a, b〉 = a|a, b〉 and

Jz |a, b〉 = b|a, b〉, show that J± act as raising/lowering operators.
c) (Medium) Prove that a can be written as ~2 j( j + 1) in which j can take integer

and half-integer values, and b can be written as m~. What are the possible values
of b for a given j?

d) (Medium) Find the matrix elements of J2, Jz and J± in the eigen basis | j,m〉.

15 (Medium) A system is in the superposition state ϕ(θ, φ) =
√

3
4π sin θ sin φ at a given

time (Use a table for spherical harmonics which will be given in the qualifying exam).
a) Discuss the possible values when Lz is measured.
b) Obtain 〈Lx〉,

〈
Ly

〉
, 〈Lz〉, and

〈
L2〉 in this state.

16 (Medium) Addition of Angular momentum.
a) Consider the total angular momentum J = J1+J2. Derive the recurrence relations

for the Clebsch-Gordan coefficients 〈 j1 j2; m1m2 | j1 j2; jm〉.
b) There are two spin 1/2 particles. By computing the Clebsch-Gordan coefficients

(using the above recurrence relations or otherwise), write all the total angular
momentum states | 12

1
2 ; jm〉 in terms of the single particle eigenstates | 12

1
2 〉 ≡ | ↑

〉, | 12 ,−
1
2 〉 ≡ | ↓〉. Remember to correctly label the states with appropriate j and

m.





CHAPTER 4

PREVIOUS TEST PROBLEMS

This chapter collects the previous test problems since 2008. Some questions may
be missing.
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48 PREVIOUS TEST PROBLEMS

4.1 Fall 2020

PROBLEMS

1 At a certain time, the simultaneous measurement of two components of the linear
momentum and one component of the position (all three in different directions) yields
the following values: px = ~k1, y = b, pz = ~k2. Write down the wavefunction (in the
position representation) which describes the quantum state of the system right after the
measurement. You do not need to explicitly specify the normalisation prefactor.

2 In a certain quantum state, the spin of an electron has average value of its z-component〈
sz

〉
= ~/4. Calculate the uncertainty of the z-component of the spin,∆sz =

√〈
s2
z

〉
− 〈sz〉2,

for that particular state.

3 A particle is in the ground state of a one-dimensional harmonic oscillator and the
uncertainty of its position is known to be ∆x. Calculate the uncertainty of its momentum.

4 The state of a particle in one dimension is given by thewavefunctionΨ(x) = N x exp
(
−x2/λ

)
.

N is a normalisation prefactor and λ > 0 a constant. Where (at which position) is the prob-
ability to find the particle highest?

4.2 Fall 2019

You choose type A or type B

PROBLEMS Type A

1 Consider a 3-dimensional Hilbert space on which the Hamiltonian is given by

H =
©«
0 a a

a 0 0
0 0 2a

ª®®¬
with a > 0.

a) Find all the eigenvalues and the corresponding eigenstates of the Hamiltonian.

b) At t = 0, a state is given as |Ψ(t = 0)〉 =
©«

1√
2

1√
2

0

ª®®®¬. What is |Ψ(t > 0)〉?

c) Calculate the expectation value of a physical quantity L =
©«
b 0 0
0 0 0
0 0 d

ª®®¬ for the

state |Ψ(t > 0)〉 in the previous problem.

PROBLEMS Type B

1 [30 pts] Consider a particle in a quantum state which is described by a real wavefunction
Ψ(x, y, z). Calculate the average value of each one of the three components of the orbital
angular momentum of that particle. Your answer should be a number!
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2 [35 pts] Which of the following pairs of observables are compatible (i.e. they can be
measured simultaneously with zero uncertainty) and which are not?

(x, lx), (x, ly), .(px, lx), .(lx, ly),

where li is the i-th component of the orbital angular momentum. Explain your answer.

3 [35 pts] Repeated measurements of the energy of a quantum harmonic oscillator (one-
dimensional) in the same quantum state gave only two values: E0 = (1/2)~ω and E1 =
(3/2)~ω with probabilities P0 = 1/3 and P1 = 2/3. In that quantum state we also have
〈x〉 = 0. Write down the quantum state as a linear combination of two energy eigenstates.
Which are the two energy eigenstates? What are coefficients in the linear combination?
(Hint: The coefficients are, in general, complex numbers!)

4.3 Spring 2019

PROBLEMS

1 Consider a quantum state with the Hamiltonian H =

(
h1 0
0 h2

)
. Here h1 < h2. A

state of this system is described by two complex numbers. We consider a normalized state

|Ψ〉 =

(
a

b

)
where |a|2+ |b|2 = 1. We nowmake a measurement of H on this state |Ψ〉 =

(
a

b

)
.

a) The possible values of the measurement are h1 and h2. What is the probability
for the measured value to be h2?

b) What is the expectation value of H for the state |Ψ〉 =

(
a

b

)
?

c) S =

(
0 s

s 0

)
is another physical observable. Here s is real and positive (not

complex). When we make a measurement of S, what are the possible measured
values? List all of them.

d) Now we make a measurement of S =

(
0 s

s 0

)
on the same state |Ψ〉 =

(
a

b

)
. What

is the probability for the measured value to be the biggest one among the possible
values?

4.4 Fall 2018

PROBLEMS

1 Consider a quantum system with the Hamiltonian H =

(
0 h

h 0

)
. Here we use the bases{(

1
0

)
,

(
0
1

)}
. It is easy to see that the two basis states are not eigenstates of H.
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a) Calculate the expectation value 〈Ψ | H | Ψ〉 of a state |Ψ〉 =

(
1
0

)
.

b) Find the ground state eigenvalue of H and the corresponding normalized eigen-
state.

c) At time t = 0, a physical state is given by |Ψ(t = 0)〉 =

(
1
0

)
. Later when t = T ,

how the physical state |Ψ(t = T)〉 is described?

4.5 Spring 2018

PROBLEMS

1 The Hamiltonian of an N-dimensional quantum system H is given with its eigenvalues
and eigenstates as follows.

H |ψn〉 = En |ψn〉 , n = 1,2, · · · N

Assume that a state at t = 0, |ψ(t = 0)〉 can be written as

|ψ(t = 0)〉 =
N∑
n=1

an |ψn〉 with
N∑
n=1
|an |2 = 1.

a) Express |ψ(t , 0)〉, the state given above at t , 0, as a linear combination of
|ψn〉’s.

b) What is the expectation value of H of this state?
c) Consider an operatorQ = |ψ1〉 〈ψ2 |+ |ψ2〉 〈ψ1 | in Schrödinger picture. Here, |ψ1〉,
|ψ2〉 are two eigenstate of H given above. Express this operator in Heisenberg
picture.

4.6 Fall 2017

PROBLEMS

1 [50 pts] Let’s consider a potential of the form

V(x) = −α δ(x)

where α is a positive constant.
a) (10 pts) Write the time-independent Schrödinger equation for the delta-function

well.
b) (10 pts) Find the solutions of Schrödinger equation of (a) for the region x < 0

and x > 0 at the bound state (E < 0). (Leave the coefficient as unknown)
c) (10 pts) Write two boundary conditions.
d) (10 pts) Using the boundary conditions in (c) and the normalization of ψ, find the

wave function and allowed energy. (You have to find the coefficient of the wave
function.)



SPRING 2017 51

e) (10 pts) Find the general solutions of (a) for both regions x < 0 and x > 0 at the
scattering state (E > 0).

2 [50 pts] Addition of Angular Momenta. Suppose that there are two spin-1/2 particles
for questions (a)-(c).

a) (10 pts) What are the allowed values for total spin?
b) (10 pts) What are the allowed values of sz?
c) (10 pts) Write the corresponding eigenstates in the notation

��s m, s1 s2
〉
.

d) (20 pts) Let’s consider the hyperfine interaction between the electron and proton
in the hydrogen atom. The Hamiltonian describing this interaction, which is due
to the magnetic moments of the two particles is

Hh f = A ®A1 · ®S2, (A > 0)

This formula assumes the orbital state of the electron is |1,0,0〉. The total Hamil-
tonian is the Coulomb Hamiltonian plus Hh f . Hh f splits the ground state into two
levels. Find these two energy levels.

4.7 Spring 2017

PROBLEMS

1 [25 pts] The Pauli matricesσi satisfy the following commutation and anti-commutation
relations:

[σi, σj] = 2iεi jkσk, {σi, σj} = 2δi j .

a) (15 pts) Using the two relations show that

(®σ · ®a)(®σ · ®b) = ®a · ®bI + i®σ · (®a × ®b),

where ®a and ®b are three-dimensional vectors and I is the 2 × 2 unit matrix.
b) (10 pts) Evaluate (®σ · n̂)2, where n̂ is an arbitrary unit vector, |n̂| = 1.

2 [25 pts] You are given the following information:

Sx |±〉x = ±
~

2
|±〉x , Sz |±〉z = ±

~

2
|±〉z

The two bases |±〉x and |±〉z are related to each other by

|±〉x =
1
√

2
(
|+〉z ± |−〉z

)
.

Find the matrix representation of Sx in the Sz basis.

3 [25 pts] Consider a 1-dimensional wave function given by

ψ(x) = N exp (−a|x − 5|) ,

where N is the normalization constant and a is a positive real number.
a) (15 pts) Find the expectation value of the position.
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b) (10 pts) Find the probability that the particle is observed in the range −1 < x < 1.
Hint: You may use the following identities:∫

eαx =
eαx

α
,

∫
xeαx =

eαx

α2 (αx − 1) ,
∫

x2eαx =
eαx

α3

(
α2x2 − 2αx + 2

)
.

4 [25 pts] Consider a system of three states whose Hamiltonian is given by the matrix of

H = V0
©«
1 ε 0
ε 2 2ε
0 2ε 3

ª®®¬ ,
where V0 is a constant energy and ε is a small number (ε � 1) so that perturbation theory
can be applied.

a) (5 pts) Find the eigenvectors and eigenvalues of the unperturbed Hamiltonian,
where ε = 0.

b) (20 pts) Obtain the leading correction to the energy of the highest-energy state in
the zeroth-order Hamiltonian. What is the corrected total energy of this state?

Hint: The first-order and second-order energy corrections to the state
��n(0)〉 are

given by

E (1)n =
〈
n(0)

��� H ′
���n(0)〉 ,

E (2)n =
∑
m,n

��〈n(0)
�� H ′

��m(0)〉��2
E (0)n − E (0)m

,

where H ′ is the perturbing small Hamiltonian.

4.8 Fall 2016

PROBLEMS
R Justify your answers. Please be brief but clear!
R Put each final answer in a box.
R Solve all problems.

1 (30 points) You are given a quantum state

|Ψ〉 = N (|Ψ1〉 + 2 |Ψ2〉 + |Ψ〉3) ,

where |Ψ〉1, |Ψ〉2, |Ψ〉3 are normalized eigenkets of an observable Â with eigenvalues
a1 = −2, a2 = 0, a3 = 2. Calculate the normalization constant N and then the average value〈

Â
〉
and the uncertainty ∆Â of the observable Â.

2 (50 points) Consider a two-particle system in which the momenta and masses of the
particles are ( ®p1,m1) and ( ®p2,m2), respectively. The potential of interaction is a function
of the radial distance between particles, called a central potential. We want to express
physical quantities in terms of the center of mass and relative coordinates. The center of
mass position and momentum are

®R =
m1®r1 + m2®r2

m1 + m2
, ®P = ®p1 + ®p2,
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and the relative position and momentum are

®r = ®r2 − ®r1, ®p =
m1

m1 + m2
®p2 −

m2
m1 + m2

®p1.

a) (20 pts) Show that

®p2
1

2m1
+
®p2

2
2m2

=
®p2

2µ
+
®P2

2M
,

where µ is the reduced mass and M is the total mass. Give the detailed derivation
and find the expression of µ.

b) (15 pts) Show that m1®r
2
1 + m2®r

2
2 = µr2 + M ®R2. Give the detailed derivation.

c) (15 pts) Show that ®p1 · ®r1 + ®p2 · ®r2 = ®p · ®r + ®P · ®R. Give the detailed derivation.

3 (20 points) Given the matrix

A =
©«

1 i 1
−i 0 0
1 0 0

ª®®¬ .
a) (10 pts) Is A Hermitian?
b) (10 pts) Find the eigenvalues of A.
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4.9 Spring 2016

PROBLEMS
R Justify your answers.
R Put each final answer in a box.
R All problems carry equal weight.

1 You are given a quantum state

|Ψ〉 = N (|Ψ1〉 + 2 |Ψ2〉 + |Ψ〉3) ,

where |Ψ〉1, |Ψ〉2, |Ψ〉3 are eigenkets of an observable Â with eigenvalues a1 = −1, a2 = 0,
a3 = 1. Calculate N and then the average value

〈
Â
〉
and the uncertainty∆Â of the observable

Â.

2 A particle of mass m, in one dimension, experiences a force F = −k x (k > 0), and its
quantum state, at a given instant, is represented by the wavefunction

Ψ(x) = N exp
(
−λx2/2

)
,

where N is a normalization prefactor. Calculate the value of the parameter λ for which the
energy of the particle becomes sharply defined (in other words, its uncertainty vanishes).

3 The wavefunction of a particle in one dimension, at a given instant, has the form

Ψ(x) =
1
√

2
[Ψ1(x) + Ψ2(x)] ,

where Ψ1(x) and Ψ2(x) are normalised eigenfunctions of the energy with eigenvalues E1
and E2, respectively. Assuming that Ψ1(x) is an even function and Ψ2(x) is an odd function
(both real), calculate the average position of the particle at time t: 〈x〉t . Express your answer
in terms of E2 − E1 and 〈x〉t=0.
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4.10 Fall 2015

PROBLEMS
R Justify your answers.
R Put each final answer in a box.
R All problems carry equal weight.

1 Calculate the average value of the momentum for a state described by a wavefunction
of the form

Ψ(x) = ψ(x) exp(ik x),

where k is a real number and ψ(x) is a real, square integrable function with
∫ +∞
−∞

ψ2(x)dx =
1.

2 In a certain quantum state, the spin of an electron has average value of its z-projection
equal to ~/4. Calculate the probabilities (P+,P−) to find the spin up or down in the z-direction
for that particular state.

3 A particle is trapped in an infinitely deep square potential well (one-dimensional). The
energy of the ground state is 3 eV. Calculate its average energy in a state described by the
wavefunction

Ψ =
1
√

3
Ψ1 + i

√
2
3
Ψ2,

where Ψ1 and Ψ2 are the ground and the first excited state, respectively.

4.11 Spring 2015

PROBLEMS

1 When 1-dimensional potential is given by V(x) = V0 δ(x). Here, δ(x) is the Dirac delta
function. Calculate the coefficients of transmission and reflection.

2 Show the following relations on δ(x) function.
a) δ(−x) = δ(x)
b) xδ′(x) = −δ′(x) (Prime denotes differentiation.)

c) δ(ax) =
δ(x)

a
(a > 0)
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4.12 Fall 2014

PROBLEMS
Consider a 3-dimensional Hilbert space on which the Hamiltonian is given by

H =
©«
ε 0 0
0 2ε 0
0 0 3ε

ª®®¬
with ε > 0.

1 Find all the eigenstates and the corresponding eigenvalues of the Hamiltonian.

2 At t = 0, a state is given as

|Ψ(t = 0)〉 =
©«

1√
3

1√
3

1√
3

ª®®®¬ .
What is |Ψ(t > 0)〉?

3 A physical quantity L is defined as

L =
©«

0 0 i

0 0 0
−i 0 0

ª®®¬
with i =

√
−1.

a) When we measure this quantity L, what are the possible outcomes? In other
words, list all the possible values of the measurement.

b) Consider the state |Ψ(t > 0)〉 in question 2. We want to make a measurement
of L for this state |Ψ(t > 0)〉. Calculate the probability for the outcome of the
measurement to be the maximum value among the list in a).
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4.13 Spring 2014

PROBLEMS
Consider the one-dimensional harmonic oscillator with the Hamiltonian,

H =
p2

2m
+

1
2

mω2x2.

1 Write the Heisenberg equations of motion for p and x.

2 Write the Heisenberg equations of motion for

a =
1
√

2
(Q + iP) and a† =

1
√

2
(Q − iP) .

Here, we define new operators

P =
p

√
mω~

and Q = x
√

mω
~
.

3 Find the solutions of question 2. That is, determine a(t) and a†(t).

4 Check the time dependence or independence of the number operator N = a†a.

5 Find x(t) and p(t).

6 Express exp
(
iHt
~

)
x(0) exp

(
− iHt
~

)
in terms of x(0), p(0), m, ω and t and compare with

x(t) found in question 5.
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4.14 Fall 2013

PROBLEMS
Consider the one-dimensional harmonic oscillator with the Hamiltonian

H =
p2

2m
+

1
2

mω2x2.

We define new operators

P =
p

√
mω~

and Q = x
√

mω
~
.

1 Write the Hamiltonian in terms of P and Q.

2 Compute the commutator relation [P,Q].

3 For the operators

a =
1
√

2
(Q + iP) and a† =

1
√

2
(Q − iP) ,

write the Hamiltonian in terms of a and a†.

4 Compute [a,H] and [a†,H] in terms of a or a†.

5 Using the eigenvalue equation of the energy H |n〉 = ~ω
(
n + 1

2

)
|n〉, what are the

eigenvalues of aa† and a†a acting on the state |n〉?

6 Find the eigenvalue of H acting on the state a† |n〉. Similarly, find the eigenvalue of H
acting on the state a |n〉. From this observation, find the n dependent coefficients A and B
in a |n〉 = A |n − 1〉 and a† |n〉 = B |n + 1〉.
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4.15 Spring 2013

PROBLEMS

1 An electron in the Coulomb field of a proton is in a state described by the wave function

1
6

[
4ψ100(r) + 3ψ211(r) − ψ210(r) +

√
10ψ21−1(r)

]
.

a) What is the expectation value of the energy?
b) What is the expectation value of ®L2?
c) What is the expectation value of Lz?

2 Hamiltonian of 1-dimensional harmonic oscillator

H =
p2

2m
+

1
2

mω2x2

can bewritten in terms of the non-Hermitian operator a and its adjoint a† asH = ~ω(a†a + c).
a) Determine a and a†, and the constant c if [a,a†] = 1.
b) If |n〉 is an eigenstate of N = a†a with eigenvalue n, show that

a† |n〉 =
√

n + 1 |n + 1〉 .
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4.16 Fall 2012

PROBLEMS

1 Use the uncertainty relation to estimate the ground state energy of a harmonic oscillator.
The energy is given by

E =
p2

2m
+

1
2

mω2x2.

2 Consider for the potential of the form

V(x) =


∞, x < 0
0 0 < x < a

∞ a < x

a) find the normalized eigenfunction and eigenvalue.
b) find the expectation value of the kinetic energy.

3 Consider a particle in a box as in the above problem. Its wave function is ψ(x) =
√

2
a .

Calculate the probability that an energy measurement yields the ground state energy.

4.17 Spring 2012

PROBLEMS

1 Use the uncertainty relation to estimate the ground state energy of a harmonic oscillator.
The energy is given by

E =
p2

2m
+

1
2

mω2x2.

2 Calculate the following commutators.
a) [p, p2], where p is the momentum operator.
b) [x, p]
c) [xp, p]
d) [P,H], where H is general energy operator and P is the parity operator.

3 Consider for the potential of the form

V(x) =


∞, x < 0
0 0 < x < a

∞ a < x

a) find the normalized eigenfunction and eigenvalue.
b) find the expectation value of the kinetic energy.

4 Consider a particle in a box as in the above problem. Its wave function is ψ(x) =
√

2
a .

Calculate the probability that an energy measurement yields the ground state energy.
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4.18 Fall 2011

PROBLEMS

1 Consider a paricle whose normalized wave function is

Ψ(x) =

{
2α
√
αxe−αx, x > 0,

0, x < 0

a) Calculate 〈x〉 and
〈
x2〉.

b) Calculate Φ(p) and use this to calculate 〈p〉 and
〈
p2〉.

2 An electron in the Coulomb field of a proton is in a state described by the wave function

1
6

[
4Ψ100(r) + 3Ψ211(r) − Ψ210(r) +

√
10Ψ21−1(r)

]
.

a) What is expectation value of the energy?
b) What is expectation value of ®L2?
c) What is expectation value of Lz?

4.19 Spring 2011

PROBLEMS

1 Obtain 〈r〉 and
〈
r2〉 for an electron in the ground state of hydrogen which is given by

ψ100(r, θ, φ) =
1
√
πa3

e−r/a .

Here, a is the Bohr radius.

2 Hamiltonian of 1-dimensional harmonic oscillator is given by

H =
p2

2m
+

1
2

mω2x2.

and it can be also given by
H = ~ω

(
a†a + c

)
.

Here a† is the adjoint of non-Hermitian operator a.
a) Show a and a†, and the constant c if [a,a†] = 1.
b) If |n〉 is an eigenstate of N = a†a with eigenvalue n, show that

a† |n〉 =
√

n + 1 |n + 1〉 ,
a |n〉 =

√
n |n − 1〉 .

(n is a non-negative integer.)
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4.20 Fall 2010

PROBLEMS

1 Consider a particle incident from left on a barrier of height V an width a as shown in
the figure.

V(x) =


0 (x < 0)
V0 (0 < x < a)

0 (x > a)

Figure 4.1 Problem 1 of the test at Fall 2010.

a) Using a time-dependent Schrödinger equation, show that the following current
conservation law is satisfied.

∂

∂t
ρ(x, t) +

∂

∂x
J(x, t) = 0.

Here, ρ(x, t) is the probability density and J(x, t) is the probability current density.
b) Write Schrödinger equations and obtain their solutions in three regions of x < 0,

0 < x < a and x > a.
c) Obtain the probability that an incident particle penetrates beyond the barrier.

2 Consider a harmonic oscillator with Hamiltonian of

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2.

a) Using annihilation operator (A) and creation operator (A†), show that the com-
mutator of A and A† is [A, A†] = 1.

b) Obtain the commutators of A and A† with the Hamiltonian.
c) Show that

Un =
(A†)n
√

n!
U0.

Here, Un and U0 are the n-th and lowest eigenfunctions, respectively.
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4.21 Spring 2010

PROBLEMS

1 Calculate the expectation values of the potential and kinetic energies in any stationary
state of the harmonic oscillator.

2 Find the transmission coefficient of a particle through a rectangular barrier for E < V0.

Figure 4.2 Problem 2 of the test at Spring 2010.
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4.22 Spring 2009

PROBLEMS

1 A particle is confined in an infinite well of width L.
a) What is the probability that the particle in the ground state is found between L

4
and 3L

4 ?
b) What is the probability that the particle in the first excited state is found between

L
4 and 3L

4 ?

2 Consider a system which is described by the state

ψ(θ, φ) =

√
3
8

Y11(θ, φ) +

√
1
8

Y10(θ, φ) + AY1−1(θ, φ),

where A is a real constant.
a) Calculate A so that |ψ〉 is normalized.
b) Find L+ψ(θ, φ).
c) Calculate the expectation values of Lx and ®L2 in the state |ψ〉.
d) Find the probability associated with a measurement that gives zero for the z-

component of the angular momentum.
e) Calculate 〈χ | Lz | φ〉 and 〈χ | L− | φ〉, where

χ(θ, φ) =

√
8

15
Y21(θ, φ) +

√
4
15

Y10(θ, φ) +

√
3

15
Y2−1(θ, φ),

(Hint) L± |l,m〉 = ~
√

l(l + 1) − m(m ± 1) |l,m ± 1〉 ,

Lx =
1
2
(L+ + L−), ®L2 = L+L− + L2

z − ~Lz .

3
a) Show that the operators O1ψ(x) = x3ψ(x) and O2ψ(x) =

(
x d
dx

)
ψ(x) are linear

operators.
b) Calculate the commutator of [O1,O2].
c) Show that the following operators are not linear operators.

O4ψ(x) = eψ(x), O5ψ(x) =
dψ(x)

dx
+ a.

(Hint) Definition of linear operator L: L[ψ1(x) + ψ2(x)] = Lψ1(x) + Lψ2(x) and
Lcψ(x) = cLψ(x).
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4.23 Fall 2008

PROBLEMS
R You can solve only one problem among two problems.

1 One dimensional harmonic oscillator: For the Hamiltonian

H =
p2

2m
+

mω2x2

2
.

one can introduce

a =
√

mω
2~

(
x +

ip
mω

)
, a† =

√
mω
2~

(
x −

ip
mω

)
.

a) Express x2 in terms of a and a†.
b) Find the expectation value of x2 for the ground state |0〉.
c) Express p2 in terms of a and a†.
d) Find the expectation value of p2 for the ground state |0〉.
e) Find the expectation value of H for the ground state |0〉.

2 Addition of spin angular momentum: Let ®S = ®S1 + ®S2 be the total spin angular
momentum of two spin 1/2 particles. Note that

S±
��S,mS

〉
= ~

√
S(S + 1) − m

S
(m

S
± 1)

��S,mS ± 1
〉
.

One can compute C-G coefficients
〈
m1,m2

�� S,mS

〉
by successive applications of S± =

Sx ± iSy on the vectors
��S,mS

〉
. Work out in the two subspaces S = 1 and S = 0. In other

words, find out |1,1〉, |1,0〉, |1,−1〉, |0,0〉 in terms of |+,+〉, |+,−〉, |−,+〉, |−,−〉 explicitly.





APPENDIX A

OLDER TEST PROBLEMS

A.1 Fall 2006 (QT: Quantum Mechanics)

PROBLEMS

1 The spin-dependent Hamiltonian of an electron-positron system in the presence of a
uniform magnetic field in the z-direction can be written as

H = A®S(e
−) · ®S(e

+) +

(
eB
mc

) (
S(e

−)
z − S(e

+)
z

)
.

Suppose the spin function of the system is given by χ(e
−)
+ χ(e

+)
− .

a) Is this an eigenfunction of H in the limit A→ 0, eB/mc , 0?
b) If it is, what is the energy eigenvalue? If it is not, what is the expectation value of

H?

2 Show that the substitution ®∇ → ®∇ −
ie
~c
®A in ®j =

~

2mi

[
ψ∗ ®∇ψ − (®∇ψ∗)ψ

]
produces a

gauge-invariant current density and that this new ®j satisfies the continuity equation

∂ρ

∂t
+ ®∇ · ®j = 0

KNU Physics Qualifying Tests.
By KNU Department of Physics, Copyright © 2021

67



68 OLDER TEST PROBLEMS

for the Schrödinger equation

i~
∂ψ(®x, t)
∂t

= −
~2

2m

(
®∇ −

ie
~c
®A
)2
ψ(®x, t) + eΦψ(®x, t)

in the presence of an electromagnetic field.

A.2 Spring 1992 (QT: Quantum Mechanics)

PROBLEMS

1 Let’s assume that the nuclear charge Ze is uniformly distributed inside the sphere of
radius R for the hydrogen-like atom.

a) Express the potential energy difference due to the finite size of the nucleus.
b) Using the above results, calculate the first order correction to the ground state

energy of a hydrogen-like atom.
(Note): R10(r) = 2(a0)

−3/2 exp(−r/a0).

2 Consider a sysytem of two spin-1/2 particles which are fixed at different positions. Let
the only interaction between two particles is given by

W = A
(
®S1 · ®S2 + BS1zs2z

)
,

where ®S1 and ®S2 are the spins of the two particles.
a) Represent all possible eigenstates |S,ms〉 of the operators ®S (= ®S1 + ®S2) and Sz .
b) Show that the state |S,ms〉 is the eigenstate of the Hamiltonian W and find the

corresponding eigenvalue.
c) If each particle has the spin value S1z =

1
2 and S2z = −

1
2 , respectively, at t = 0,

find the state of the system as a function of time. Find the time required to recover
the initial configuration.

3
a) Write down theHeisenberg picture equations ofmotion for the harmonic oscillator

and solve them.
b) If N = a†a, estimate 〈N〉 and ∆N for an oscillator with mass m = 1 gm and

frequency ω = 1 Hz, if the wave packet has a speed of 10 cm/s at the minimum
of the potential.

A.3 June 1991 (Master degree QT: Quantum Mechanics)

PROBLEMS

1 A particle of mass m is trapped in a one-dimensional potential such as

V =

{
1
2 k x2, for x > 0
∞, for x < 0
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a) What are the ground state enegy of the first excited state?
b) What is the expectation value

〈
x2〉 for the ground state?

2 Consider a system with j = 1. Obtain the explicit form of〈
j = 1,m′

�� Jy
�� j = 1,m

〉
in a 3 × 3 matrix form.

3 At t = 0 the system is known to be in the first state, represented by

(
1
0

)
. Using the

time-dependent perturbation theory and assuming that E0
1 − E0

2 is not close to ±~ω, derive
an expression for the probability that the system be found in the second state represented

by

(
0
1

)
as a function of t (t > 0).


