

Axion and Microwave Photon

2nd School for Particle Detector and Application at KNU Jan. 22 2021

SungWoo YOUN

Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

2

in the set of the set

Outline

- Axion and dark matter
 - Strong CP problem
 - Dark matter
- Axion detection
 - Detection principle
 - Searching strategies
- Microwave detection
 - Power amplifiers
 - Single photon detectors
 - Thermal detectors
- Summary

Outline

Axion and dark matter

- Strong CP problem
- Dark matter
- Axion detection
 - Detection principle
 - Searching strategies
- Microwave detection
 - Power amplifiers
 - Single photon detectors
 - Thermal detectors
- Summary

Strong CP problem

QCD vacuum structure adds an extra terms to L_{QCD}

$$L_{\theta} = \frac{\theta}{8\pi} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Violates CP symmetry proportionally to θ
- Not predictable by theory, must be measured
- CP-violation term induces charge separation
 - Neutron electric dipole moment (nEDM)
 - Experimental value is very tiny
 - $d_n < 10^{-26} \text{ ecm} \Rightarrow \theta < 10^{-10}$
 - Theoretically, $\theta = 0$ if a quark is massless (X)
- Strong CP problem
 - Naturalness problem $(0 < \theta_{the} < 2\pi vs. \theta_{exp} \sim 0)$

PQ mechanism and axion

- Peccei & Quinn (1977)
 - New global $U_{PQ}(1)$ symmetry w/ scalar field a(x)

$$L_{\theta} = \left(\frac{\theta - \frac{a(x)}{f_a}}{f_a}\right) \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Spontaneously broken at energy scale f_a
- Induces a potential with minimum at $a(x) = \theta \times f_a$
- Dynamic solution to the strong CP problem
- Wilczek & Weinberg (1978)
 - (pseudoscalar) Goldstone boson => Axion
 - Axion mass depends on energy scale f_a

$$m_a = m_p \frac{f_p}{f_a} \gg 6 \, eV \frac{10^6 \, GeV}{f_a}$$

 For f_a ~ EW scale => m_a ~ 100 keV => PQWW axion excluded by collider experiments

Invisible axion

- J.E. Kim (1979)
 - Proposed very light axions with a very large f_a (in early universe)

$$m_a \gg 6 \ meV \frac{10^{12} \ GeV}{f_a}$$

Spanned axion mass by many orders of magnitude

Axion interactions

- Quarks, gluons, photons, leptons,...
- Model dependent on PQ charge assignment
 - KSVZ Heavy quark (ex. $g_{\gamma} = -0.97$)
 - $DFSZ Higgs doublet (ex. g_v = 0.36)$

 $= -g_{a\gamma\gamma}a\vec{E}\cdot\vec{B}$

Axion dark matter

- Cosmic axion (1983)
 - May account for dark matter
 - Neutral, stable, and feeble integrations
 - Cosmological constraint: $f_a < 10^{12} \text{ GeV}$
 - Too light axions would be overproduced in early universe
 - Astronomical observation: SN1987A

Axion dark matter

KILLING TWO BIRDS WITH ONE STONE

9

Outline

- Axion and dark matter
 - Strong CP problem
 - Dark matter
- Axion detection
 - Detection principle
 - Searching strategies
- Microwave detection
 - Power amplifiers
 - Single photon detectors
 - Thermal detectors
- Summary

Detection principle

- Coupling with photons
 - Primakoff effect
 - Energetic photons + EM of nuclei
 => pseudoscalar particles

- Conversion of axions to photons in a magnetic field (1983)
 - Axions "borrow" virtual photons from the magnetic field to turn into real photons $L = -a \quad a\vec{E} \cdot \vec{B}$

STITUTE OF SCIE

1971 . सत्र मेथे ग

Main approaches ΚΔΙΣΤ

- Haloscope
 - DM axions in our galactic halo
 - Microwave resonators
 - ADMX, HASTAC, CAPP,...

Helioscope

- Solar axions
- Emitted by the solar core
- CAST, IAXO,...
- Photon regeneration
 - Light Shining through Wall
 - Axion generation at the lab
 - ALPS,...

Axion Parameter Space

Frequency range: 1 GHz ~ 1 THz (microwave region)

Physical Quantities

Conversion power

- theoretical parameters

Haloscope in a Nutshell

15

Outline

- Axion and dark matter
 - Strong CP problem
 - Dark matter
- Axion detection
 - Detection principle
 - Searching strategies
- Microwave detection
 - Power amplifiers
 - Single photon detectors
 - Thermal detectors
- Summary

Electromagnetic spectrum

Power detection

- Typical detection scheme for axion search experiments
 - w/ transistor-based amplifiers
 - Significant electrical shot noise is added
 - Typical power $\sim 10^{-23} W$
 - ~1 photon/s at 10 GHz
 - *T_{add}* ~ 5 K (~10 photons)
- Quantum technology
 - Josephson effects
 - Subject to the quantum limit
 - Amplitude v & phase φ
 - $\Delta v \times \Delta \phi > hbar$
 - Standard quantum limit (SQL)
 - $T_{SQL} \approx 50 \text{ mK} \times \text{f} \text{ [GHz]}$

Josephson effect

- Josephson junction (JJ)
 - Two superconductors separated by a thin insulator
 - Building block of microwave quantum electronics
- DC Josephson effect
 - $\delta => potential across the insulator$
 - DC current w/o external field
- AC Josephson effect
 - V_{DC} across the junction, ϕ varies with t
 - Oscillating current
 - Voltage-to-frequency converter
- A broad range of application
 - Non-dissipative and non-linear
 - SQUID (magnetometer)
 - Superconducting qubit (quantum computation and information)
 - Standard representation of voltage

SQUID

19

- Superconducting Quantum Interference Device
 - Two JJs in a loop
 - Sensitive magnetometer via Josephson effect
- Principle
 - $\Phi = 0, I_a = I_b = I/2$
 - $\Phi \neq 0$, $I_a \neq I_b => V$ (to cancel Φ)
- Quantum noise limited amplifiers
 - Standard Quantum Limit: $T_{SQL} \approx 50 \text{ mK} \times f \text{ [GHz]}$

MSA

Microstrip SQUID Amplifier

- SQUID washer + insulating layer + SC microstrip coil
 - L and C between washer and coil determines the resonant frequency
- RF input signal couples with a SQUID via a mutual inductance

JPA

Capacitor

SQUID

Josephson Parametric Amplifier

- LC resonator with an array of SQUIDs
- Parametric (inductance) gain from a pump tone

Linear amp. vs. SPD

- Linear amplifiers are subject to the fundamental limit
 - Standard quantum limit (SQL)
 - *T*_{SQL} ≈ 50 *mK* × *f* [GHz])
 - Linear dependence on frequency
 - cf. T_{phy} (< 100 mK) is fixed by experimental setup
 - At high frequencies, T_{SQL} is predominant

- Not subject to the SQL
- Well developed in optics
- Very challenging in microwave regime ($E_{mw} \sim 10^{-6} E_{opt}$)
- Recently actively being developed for Qubit in the GHz range (quantum information processing)

Qubit

- Quantum bit
 - Basic units of quantum information
 - Two-state (two-level) quantum mechanical systems
 - Analogous to classical bits: |0) and |1)
 - Superposition and entanglement
 - Represented by the Bloch sphere
- Examples

۰

. . .

- Electron spin: up & down
- Photon polarization: horizontal & vertical
- Atom energy state: |g) & |e)

A state is represented by a point on the surface of the Bloch sphere

23

Josephson-junction qubit

- Single atoms or ions
 - Well know qubit systems
 - Parameters are fixed by nature and hard to control
- Superconducting circuits on a chip (artificial atoms)
 - Analogous to processors in classical computers
 - Very flexible in design and tunable parameters
 - For nonlinearity, JJs are integrated

In the first of the second sec

26

Qubit refinements

Tunable Josephson energy

Improved connectivity

3-junction flux qubit

Flux-noise reduction

Charge-flux qubit

Charge-noise reduction

Fluxonium

Charge-noise reduction

C-shunt flux qubit

Charge-noise reduction

Tunable coupling

Tunable-gap flux qubit

Tunable Josephson energy

SPD – Current-biased JJ

SPD – Irreversible qubit counting

Rydberg atoms

- General properties
 - Alkali (hydrogen-like) atoms
 - Large principle quantum number, n
 - 10 < n < 150
 - Classical size r
 - $r = n^2 a_0$ (a_0 : Bohr radius)
 - Tunable transition frequency between |g) and |e)
 - Via stark effect
- Peculiar properties
 - Large transition dipole moment
 - Strong coupling with EM field
 - $\Delta E_n = E_{n+1} E_n \sim GHz$ (ex. $\Delta E_{100} \approx 7$ GHz)
 - Long life time: $\tau \sim msec$ (ex. $\tau_{100} \approx 1 msec$)
- Good for MW photon detection

Stark Effect

(b)

Energy [cm⁻¹]

-9.25

-9.3

9.35

-9.4

-9.45

-9.5

-9.55

0

108 manifold

b/w

111s and 111p

110d

111p

109d

107manifold

50

Detection principle

109manifold

108 manifold

100

Electric field

[mV/cm]

Energy

150

adiabatic (slow

200

1bs

Rydberg atom cavity detector

CARRACK experiment

Rev. Mod. Phys. 75, 777 (2003)

Bolometer

- Thermal detector
 - No need to collect electron
 - Material with small heat capacity (C)
 - Large thermal conductance (G)
 - Fundamental limit by thermodynamics

Transition Edge Sensor (TES)

Temperature [mK]

Graphene-based bolometer

Nature 586, 42 (2020)

Summary

- Axion is a hypothetical particle to address fundamental questions in physics
 - Strong CP problem & dark matter
- Axion is detectable in the form of microwave photons under strong magnetic field
- Various principles have been developed
 - Power detection
 - Linear amplifier, SQUID, JPA
 - Single photon detection
 - Qubit excitation / Rydberg atom
 - Thermal detection
 - Bolometer

Photon detection in the microwave domain has a wide range of applications

Thank you for your attention!

Frequency tuning

Conductor rod (TM₀₁₀)

Dielectric rod (TM₀₁₀)

Form factor

Cavity mode and external field

 $C_{mnp} = \frac{\left|\int \vec{E}_{c} \cdot \vec{B}_{0} dV\right|^{2}}{\int \varepsilon \left|\vec{E}_{c}\right|^{2} dV \int \left|\vec{B}_{0}\right|^{2} dV}$

For cylindrical cavities

- z-direction for TM modes
- φ φ -direction for TE modes

TM₀₁₀ mode

- Maximum form factor
- Typical cavity mode for axion haloscopes

38

