감마선 분광분석 - Gamma-ray Spectrometry -

I. 감마선분광학의 기초지식

◆ 분광학(Spectroscopy)

- 파장(주파수, 에너지)에 따른 빛과 물질 간의 상호작용 연구
- 프리즘 -> 가시광선 관찰
- 오늘날 파장(에너지)에 따른 어떤 양을 측정하는 것을 의미
- $\mathbf{E} = \mathbf{h} v = \mathbf{h} \mathbf{C} / \lambda$

◆ 스펙트럼(Spectrum)

파장(주파수, 에너지)의 함수로 주어지는
 반응 값을 도표로 나타낸 것

Low Energy

 10^{7}

Radio Waves

10⁸ 10⁹ 10¹⁰ 10¹¹

• 에너지가 클수록 파장이 짧다

10⁶

- 파장(주파수, 에너지)에 따른 빛(방사선)
 의 세기 측정 및 기록
- Spectroscopy와 구분 없이 사용

AEA al Alama Unergy Agency	Nuclear Energy Division – Marcoule center
	Fuel Cycle Technology Department
	Fuel Technology Development Unit

Characterization and Vizualization Technologies in DD&R

Gamma Spectrometry

Gamma-ray Spectroscopy

S

Gamma Ray Spectroscopy

Experiment GRS

University of Florida — Department of Physics PHY4803L — Advanced Physics Laboratory An introduction: gamma rays, detectors, spectrometers

Exotic Beams Summer School 2011, MSU

Dirk Weisshaar (NSCL)

♦ 감마선 분광분석법(Gamma ray spectrometry)

- 다양한 매질(matrices)내에 있는 감마방출 동위원소의 식별(identification) 및 정량(quantification)
- 선원(source)로부터 방출된 감마선의 수(number)와 에너지(energy)
- 응용 : 감마선의 수 ⇒ 방사능의 결정(determination),

감마선의 에너지 ⇒ 방사성 핵종의 식별(identification)

◆ 스펙트럼 분석(spectrum Analysis)

- 전 에너지 흡수에 해당하는 스펙트럼 피크의 분석
- 피크 위치(location) ⇒ 감마선에너지 측정 ⇒ 방사성핵종 식별
- 피크 면적(area) ⇒ 감마선 방출률 측정 ⇒ 방사능의 결정

◆ 감마선 분광분석법의 활용(Applications)

- 장점 ⇒ 1회 측정으로 많은 수의 감마방출 핵종을 검출, 전처리 비교적 간단
- Ge 반도체검출기의 출현 ⇒ 다양한 분야에서 응용
- 컴퓨터의 보급 ⇒ 많은 양의 데이터 해석, 신속한 처리

◆ 활용 분야

- 원자력시설 의 모니터링
- 보건물리(방사선방호)
- 핵의학
- 재료/물성 연구
- 생명과학
- 지구환경과학
- RI를 이용하는 산업체 (비파괴검사 등)

1. 서론

gamma Spectroscopy System(typical)

- HPGe detector (or Nal Detector)
- High voltage power supply
- Preamplifier
- Amplifier
- Analogue to Digital Converter(ADC)
- Multi-Channel Analyzer(MCA)

◆ 고순도 게르마늄 검출기(HPGe)

- 입사한 감마선과 Ge 원자와의 상호작용 결과로 생긴 고속전자에 의하여 그 에너지에 비례하는 전하[electron-hole pair]를 생성하는 일종의 방사선센서
- 대부분 동축 원통형 구조
- 접합구조 및 인가전압의 극성에 따라 P형(+전압 인가)과 N형(-전압 인가)
- P형 : 방사선 입사창이 약간 두꺼워 50 keV 이상의 감마선이나 X-선이 측정대상
- N형: 입사창을 매우 얇게 제작할 수 있어서(~0.3 µm) 저에너지 영역(약 10 keV)에서 수 MeV 영역까지 측정이 가능

◆ Nal 검출기와 HPGe 검출기의 비교

Nal(TI)	HPGe		
저렴하다 (×10)			
검출효율이 높다 (×10)			
대용량 검출기 제작에 용이하다			
일반 환경에서 동작한다	액체질소로 냉각하여 사용한다 (77K)		
온도에 민감하다	온도의 영향을 덜 받는다		
양극의 전압에 민감하다 (Vº.까)	인가전압의 영향을 덜 받는다		
에너지분해능이 저조하다	에너지분해능이 우수하다		
(6%, 80 keV for 3"×3" at 1332 keV)	(0.15%, 2 keV typical at 1332 keV)		

고전압 공급장치

- 검출기내에 생성된 전하를 수집하기 위하여 역 전압을 통한 전기장을 인가하는 기능
- 전형적인 HPGe 검출기는 약 3000 V 정도가 요구되며, 최고 5000 V까지 인가할 수 있는 것들이 시판되고 있음

전치증폭기

- 검출기내에 생성된 전하 량에 비례하는 전압신호(mV)로 바꾸어 주는 기능
- 선형증폭기에 신호의 손실 없이 전달함과 동시에 접속한 신호케이블에 의한 잡음이 생기
 지 않도록 출력 임피던스를 낮게 유지

◆ 선형증폭기

- 빠른 상승시간(rising time)과 느린 하강시간(decay time)을 지닌 전치증폭기의 출력신호
 를 정형(shaping) 하는 기능과
- 신호대 잡음의 비(S/N비)를 개선시켜 신호를 선형적으로 증폭(~ 10 V)시키는 기능

그림. HPGe 검출기의 전치증폭기 실제 사진

①End cap ②Cap ③Ge반도체 결정 ④고정 나사 ⑤고정부 ⑥Cooling rod 쇠고리 ⑦열절연체(플라스틱 FET) ⑧차폐 **OCryostat** flange ⑩전치증폭기 ①고압필터 ⑫수지 Ring ODewar flange @Dewar vessel @Cold finger Molecular sieve

아날로그-디지털변환기 (Analogue to Digital Conversion, ADC)

• 감마분광분석시스템의 심장 역할

MCA

- 검출기에 흡수된 에너지에 비례하는 펄스를 크기 별로 분류하여 해달채널에 기록 및 저장(기 억), 출력하는 기능과 수집과정에서의 스펙트럼을 CRT상에 표시할 수 있는 기능
- 파고분석기는 ADC, 스펙트럼 메모리, 디스플레이 장치로 구성
- 오늘날에는 대부분 PC에 ADC, 스펙트럼 메모리를 조합시킨 PC-MCA가 많이 이용

◆ 디지털 신호처리 장치(DSP)

- 펄스신호의 아날로그 파형 정형(shaping) 기능을 디지털 domain에서 처리
- 과거 NIM 규격의 아날로그 전자회로부(예를 들면 선형증폭기, ADC 등)를 대신하는 기능
- CANBERRA사 : DSA-1000, Lynix 등
- ORTEC사: DSPEC series

◆ 감마선 스펙트럼의 예

◆ 검출기의 냉각

- 검출기가 생각되지 않은 상태에서 고전압을 인 가하면 검출기 Ge 결정에 큰 누설전류가 흘러 서 전치증폭기를 손상시키므로 충분히 냉각 (24시간 정도)
- 충분히 냉각되지 안은 상태에서의 고전압 인가 에 의한 검출기 충격을 방자하기 위해서는 DSP 의 고전압차단(HV INH) 케이블을 연결해주는 것이 좋음
- HPGe 검출기는 고전압이 걸려 있지 않으면 냉 각이 중단된다고 하더라도 성능이 나빠지지는 않는다.
- 재 방각은 완전하게 실온으로 돌아온 뒤 다시 방각시키는 것이 바람직하며, 이때에도 충분히 방각(24시간 정도)시켜서 고전압을 인가한다.

◆ 배경방사선[백그라운드] 선원

- 1) 검출기 재질(반도체 재질)에 함유된 천연방사성핵종으로부터 방출되는 방사선
- 2) 검출기 주변장치(지지대, 차폐체 등)에 함유된 천연방사성핵종으로부터 방출되는 방사선
- 3) 검출기를 둘러싼 공기중의 라돈과 그 딸핵종에 기인한 방사선
- 4] 지표의 지각방사선, 또는 분석실의 벽체 및 구조물로부터 방출되는 방사선
- 5) 우주선 등

◆ 배경방사선(백그라운드)를 줄이는 방법

- 1] 차폐체[납 등] 이용
- 2] 가드검출기 이용한 반동시 회로
- 3] 동시회로

◆ 차폐체 이용

가드검출기를 이용한 반동시 회로

- 가드검출기 : 플라스틱검출기(대용량), 액체섬광검출기, 고리형태의 GM 검출기 등
- 우주선에 의한 백그라운드 기여 분을 크게 저감
- 선원에서 방출되는 방사선은 주 검출기에서만 신호생성
 - 반동시 회로에서 출력펄스 형성
- 우주선은 가드 검출기와 주 검출기 모두에서 신호생성
 - 반동시회로에서 출력펄스 제거
- 컴프턴 연속부 저감
 - 선원에서 방출된 감마선이 주 검출기에서 컴프턴 산란을 한 후 가드 검출기로 입사하여
 다른 반응을 하면 반동시회로에서 출력펄스 제거

◆ 동시회로

- 베타선과 감마선을 동시 측정 : 베타붕괴에 수반되어 동시에 감마선을 방출하는 핵종
- 주로 감마선은 Nal 검출기가 측정하고 베타선은 비례수관(기체유입형 4 π)이 측정
 Nal 검출기와 비례계수관이 동상에 신호생성 → 동시회로에서 출력펄스 형성
 어느 한 검출기에서만 신호생성(백그라운드 방사선) → 동시회로에서 출력펄스 제거
- 백그라운드 저감효과가 높으므로 극저준위 방사능측정에 이용[최소검출하한치 개선]

원자와 원자핵

- 원자핵 속에 있는 양성자의 수 ; 원자번호(atomic number) Z
- 중성자의 수 : N=A-Z
- 질량수 (mass number) : A = Z+N

질량수
$$\rightarrow A$$
 X $\rightarrow Z$ 원소 기호

◆ 동위원소(isotopes)

- 양성자의 수[Z]가 같고 중성자의 수[N]가 다른 원소
- ³²S, ³³S, ³⁴S, ³⁵S, ³⁶S, ¹H(hydrogen, H), ²H(deuterium, D), ³H(tritium, T)
- 방사성동위원소(Radioisotopes, RI); ³H, ³⁵S

◆ 핵종(nuclides)

- 질량수 A와 원자번호 Z를 함수로 결정되는 원자핵의 종류를 구분해서 말할 때
- 핵종의 종류

구분	Ζ	Ν	Α	Ø
동위 원소(체)	=	+	+	${}^{1}_{1}H_{0}$, ${}^{2}_{1}H_{1}$, ${}^{3}_{1}H_{2}$
동중 원소(체)	\neq	+	=	${}^{90}_{38}Sr_{52}$, ${}^{90}_{39}Y_{51}$
동중성자 원소(체)	\neq	=	+	${}^{59}_{27}Co_{32}$, ${}^{60}_{28}Ni_{32}$
핵이성체	=	=	=	${}^{137m}_{56}Ba_{81}$, ${}^{137}_{56}Ba_{81}$

◆ 원자핵의 안정성(stability)

- 원자핵 속의 양성자수와 중성자수의 비로서 안 정성이 결정
- 무거운 원자핵(Z>20)은 양성자보다 상대적으로
 더 많은 중성자를 필요로 함
 - 원자번호가 커지면 양성자 사이의 반발력(쿨롱력) 이 커져 원자핵 자체가 불안정해지므로 그 반발력 을 약화시키기 위해서

◆ 원자핵의 붕괴(decay)

- 불안정한 핵종은 자연적으로 변환하여 안정한 핵종으로 됨
- 이러한 붕괴과정에서 반드시 α 선이나 β 선이 방출
- 불안정한 원자핵을 방사성핵종

🔶 베타 붕괴

 β⁻ decay (과잉 중성자, neutron-rich decay); 과잉 중성자가 양성자로 변환하여 전자를 원자핵 밖으로 방출

β * decay (과잉 양성자, neutron-poor decay); 양성자를 원자핵 밖으로 방출

$${}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + {}^{0}_{1}\beta + v$$

Note: β and β particles are emitted in a **spectrum** of possible energies as the decay energy is shared with a neutrino and an antineutrino, respectively.

◆ 전자포획 (Electron Capture)

• 과잉 양성자 (neutron-poor decay)를 가진 핵이 원자핵 외부의 궤도전자를 포획하여 중성자로 변환

🔶 알파 붕괴

무거운 핵은 종종 알파입자(4He)를 방출하면서 붕괴

 $226_{88}Ra \rightarrow 222_{86}Rn + \frac{4}{2}\alpha$, $210_{84}Po \rightarrow 206_{82}Pb + \frac{4}{2}\alpha$

 여기 에너지는 Auger 전자와 X-선을 방출을 가져오는 내부전환(Internal Conversion, IC)과정을 통 해서 에너지를 잃고 바닥상태가 됨

◆ 순 베타방출 선원(Pure beta sources)

Decay directly to the ground state of the product(no via the excited state)

Data from Lederer and Shirley

(1) 붕괴 도식(decay scheme)

(2) 핵이성체(nuclear isomer)

- 준안정상태(metastable)의 원자핵 ; 하나 이상 핵자의 들 뜸상태(excitation)로 인한 것
 - 원자번호(Z), 질량수(A)는 동일하지만 다른 에너지상 태를 가지는 2종 이상의 핵종
 - ▶ 일반적인 핵의 들뜸상태는 10⁻¹²초(수 psec) 정도
 - 이성핵은 상대적으로 장시간 들뜸상태 ; 준안정상태 ("m"를 붙여 구분)
 - ▶ ^{137m}Ba(2.5분), ^{99m}Tc(6.0시간), ^{103m}Rh(57.5분), ^{133m}Xe(2.1일), ^{191m}Ir(4.9초)

핵이성체 전이(isomeric transition, IT)

핵이성체가 감마선을 방출(준안정상태에서 감마붕괴)

(3) 감마선 방출확률(emission probability per decay)

- 방사성붕괴시 특정에너지(E)의 감마선이 방출될 확률[P $_{\gamma}$ (E)]; Intensity/100 decay (%)
 - > 유사용어; yield, abundance, gamma intensity[I_{γ} (%)]
 - ▶ ¹³⁷Cs의 베타붕괴 → 661.66keV 감마선 방출확률;85%

※ 모든 들뜸 상태의 원자핵이 바닥상태로 되면서 감마선을 방출하는 것은 아니다

| 내부전환(Internal Conversion, IC)

- ▶ 핵의 들뜸상태 에너지를 원자핵의 궤도(atomic electron)에 에너지를 전달하는 과정
- 나부전환계수(α) = N_e/N_γ,

여기서, N_e는 전이(transition)시 내부전환전자의 방출확률, N_y는 감마선 방출확률

- > $N_e + N_{\gamma} = 1$, $N_{\gamma} = 1/1 + \alpha = 1/1 + 0.111$) = 0.898
- ▶ 661.66keV 감마선방출확률 ; 94.4% x 0.898 = 85%

(4) 감마선 방출률(emission rate)

- 이떤 선원으로부터 방출된 에너지 E인 감마선의 단위시간당의 수(#); γ /sec
 - ▶ 참고; 방사능 단위(Bq) → radioactive decay per second의 개념

$$R(E) = P_{\gamma}(E) \cdot A$$

¹³⁷Cs 1000Bq

- ▶ 감마선방출 ; 850개 /초
- 방사선 검출기 피크효율 교정에서 매우 중요
- $\succ Eff. = \frac{cps}{\gamma ps}$, <u>cps/dps</u>

(5) 동시합산(coincidence summing)

■ 2개 이상의 감마선을 cascade형태로 방출시 동시에 검출되어 하나의 펄스신호로 합산

- > 일명 cascade 합산이라고도 함, 우연합산과는 다른 형태로서 낮은 계수율에서도 나타남
- 상용의 분석프로그램에 자체적인 보정 알고리즘을 개발해서 탑재

▲ 측정대상의 선원/시료의 방사능을 과대 또는 과소 평가를 하게 하는 원인;⁶⁰Co, ⁸⁸Y

(6) 에너지 분해능(energy resolution)

피크의 반치폭(FWHM)을 중앙값(H₀)으로 나눈 값

- ▶ FWHM; 피크의 최고값에 대한 절반(1/2)이 높이에서의 분포의 폭
- > 에너지 분해능의 값이 작으면 작을수록 피크 구별능력이 우수하다는 의미

(7) 검출 효율(detection efficiency)

절대 효율(absolute eff.); $\varepsilon_{ab} = \frac{ 검출기(계수기) 에 기록된 펄스의 수}{ 선원에서 방출된 방사선(광자)의 수}$

▶ 검출기의 특성 및 S-D geometry에 관계됨

 Our bab(relative eff.); ε_{re} =
 <u>HPGe</u> 반도체검출기의 절대bab(1332.5keV, 25cm 거리)
 3" X 3" NaI검출기의 절대bab(1332.5keV, 25cm 거리)
 3" X 3" NaI검출기의 절대bab(1332.5keV, 25cm 거리)

▶ ⁶⁰Co 선원 ; 1332.5keV

고유 효율(intrinsic eff.); $\varepsilon_{intr} = \frac{ 검출기(계수기) 에 기록된 펄스의 수}{ 검출기에 입사된 방사선(광자)의 수}$

절대효율과 고유효율의 관계 ; isotropic source의 경우

 ε_{intr} = ε_{ab} · (^{4π}/_Ω), Ω는 선원의 위치에서 검출기를 바라 본 입체각(solid angle)

 검출기의 재질, 방사선에너지, 입사방향에서의 검출기의 물리적 두께 등에 관계됨

II. 감마선 스펙트럼의 구성요소

1. 스펙트럼 카탈로그

2. 감마선과 검출기와의 상호작용 및 응답함수

(1) 광전흡수(photoelectric absorption)

- Ge원자(Ge검출기 경우)의 궤도전자와 상호작용 ; 광전자
- > 입사감마선의 모든 에너지를 궤도전자에 전달 → 입사 감마선은 사라짐
- ▶ 특성 X선 또는 auger 전자가 방출
- 입사감마선 에너지(hv)와 똑 같은 에너지의 피크가 스펙트럼상 에 생성(단일 피크)
 - full energy peak, photopeak
- ▶ 감마선(X선) 에너지스펙트럼 측정에 실질적으로 이용되는 효과

2. 감마선과 검출기와의 상호작용 및 응답함수

(2) 컴프턴 산란(Compton scattering)

자유전자나 결합력이 매우 약한 궤도전자와 충돌 상호작용 ; 컴프턴 전자, 산란감마선

$$(hv)' = \frac{(hv)}{1 + \frac{(hv)}{m_0 c^2} (1 - \cos\theta)} \qquad E_e = (hv) - (hv)' = \frac{(hv)}{1 + \frac{m_0 c^2}{hv(1 - \cos\theta)}}$$

정면충돌($\theta = \pi$)의 경우; 컴프턴 전자는 감마선 입사방향, 전자에 최대에너지가 전달

2. 감마선과 검출기와의 상호작용 및 응답함수

(3) 쌍생성(pair production)

검출기매질 원자핵(Ge원자핵)의 쿨롱장내에서 소멸 ; 전자, 양전자 쌍의 생성

- 총 운동에너지(전자KE+양전자KE); 입사감마선에너지 보다 $2m_0c^2$ 만큼 아래에 위치

$$E_{p}^{-}+ E_{p}^{+}= h\nu-2m_{o}c^{2}$$

▷ 양전자소멸 방사선 ; 0.511MeV 감마선 2개가 발생

- double escape peak, single escape peak

(1) 전에너지 피크(full energy peak)

(3) 합성 피크(sum peak)

Actual Spectra

1 -

0

500

(4) 단일 이탈 피크(single escape peak)

Single Escape Peak

2000

2500

3000

1000

1500

Energy (keV)

(5) 이중 이탈 피크(double escape peak)

Double Escape Peak

(6) 소멸 방사선 피크(Annihilation Peak)

- ◆ 전자-양전자 쌍생성(pair proudction)이 검출기주변 차폐체에서 일어나는 경우
 - 2개의 소멸방사선 가운데 하나가 검출기내로 입사
 - 이때 소멸방사선 피이크가 511keV에 생김

(7) 후방산란 피크(Backscattering Peak)

◆ 검출기주변 차폐체(납)에서 산란된 감마선이 검출기내로 입사

- 약 180도 후방으로 산란
- 수백 keV(few hundred keV) 부근에서 나타남

(8) 특성 X-선(Characteristic X-rays Peak)

- ◆ 검출기주변 차폐체(납)의 방사선에 의한 이온화 과정에서 발생한 광자가 검출기내로 입사
 - 특성 X-선은 궤도전자의 전이(transition)로 인해서 생김
 - Fill the lower empty shell

4. 검출기 크기에 따른 감마선스펙트럼 특성

(1) 소형 검출기(small detectors)

│ 2차 감마선의 평균자유행로 보다 작은 크기(<2cm); 하전입자는 모두 검출기내에서 흡수를 가정

4. 검출기 크기에 따른 감마선스펙트럼 특성

(2) 초대형 검출기(very large detectors)

2차 감마선 모두가 검출기 유감체적내에서 상호작용; 수십 cm 이상의 검출기 크기

- 검출기의 응답은 마치 원래의 입사감마선이 단일 단계에서 단순한 광전 흡수를 한 것과 동일한 결과
- 용어적으로

소형검출기의 경우 광전 피크(photoelectric peak)

대형검출기의 경우 전에너지 피크(full energy peak) 또는 전흡수 피크(full absorption peak) 적절한 표현

4. 검출기 크기에 따른 감마선스펙트럼 특성

(3) 중간크기 검출기(intermediate size detectors)

■ 실제 감마선분광학에 이용되는 대부분의 검출기 크기

- ▶ 2차 감마선의 일부가 이탈 → 에너지스펙트럼 매우 복잡
- ▶ 다중산란 → 컴프턴 단과 광전 피크 사이에 약간 낮은 스펙트럼 분포

