Vacuum and Zero Modes Much ado about nothing: the LF vacuum

Matthias Burkardt

New Mexico State University

March 16, 2021

•
$$\int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2 - m^2 + i\varepsilon)^2} = \frac{i}{4\pi m^2}$$
 (relevant for self-energy integrals)

• light-cone:
$$\int \frac{dk^+ dk^-}{(2\pi)^2} \frac{1}{(2k^+k^- - m^2 + i\varepsilon)^2}$$

- $\begin{array}{l} \hookrightarrow \mbox{ pure zero-mode, i.e. (pole structure!) } k^+ = 0 \mbox{ contribution, i.e.} \\ \int \frac{dk^-}{(2\pi)^2} \frac{1}{(2k^+k^- m^2 + i\varepsilon)^2} \propto \delta(k^+) \end{array}$
 - should we care?
 - yes: higher-order diagrams contain terms with this pole structure
 - how can we regularize this?
 - point-splitting
 - ε -coordinates

•
$$\int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2 - m^2 + i\varepsilon)^2} = \frac{i}{4\pi m^2}$$
 (relevant for self-energy integrals)

• light-cone:
$$\int \frac{dk^+ dk^-}{(2\pi)^2} \frac{1}{(2k^+k^- - m^2 + i\varepsilon)^2}$$

- $\begin{array}{l} \hookrightarrow \mbox{ pure zero-mode, i.e. (pole structure!) } k^+ = 0 \mbox{ contribution, i.e.} \\ \int \frac{dk^-}{(2\pi)^2} \frac{1}{(2k^+k^- m^2 + i\varepsilon)^2} \propto \delta(k^+) \end{array}$
 - should we care?
 - yes: higher-order diagrams contain terms with this pole structure
 - how can we regularize this?

point splitting (MB, Lenz, Thies; Brodsky, Lowdon, Mannheim,...

•
$$\int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2 - m^2 + i\varepsilon)^2} \longrightarrow \int \frac{d^2k}{(2\pi)^2} \frac{e^{i(x^+k^- + x^-k^+)}}{(k^2 - m^2 + i\varepsilon)^2}$$

• evaluate integral for nonzero x^+

 $\,\hookrightarrow\,$ take $x^+ \to 0$ limit after doing the integral

point splitting: results

- above procedure yields results that agree with equal time quantization also in higher orders
- nonperturbative generalization (MB, S.Chabysheva, J.Hiller): evaluate $\langle 0|\phi(0)\phi(x)|0\rangle$ by inserting complete set of intermediate states
- application: constructing 'effective' Hamiltonians

introducing a momentum flow (Collins)

•
$$\int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2 - m^2 + i\varepsilon)^2} \longrightarrow \int \frac{d^2k}{(2\pi)^2} \frac{1}{k^2 - m^2 + i\varepsilon} \frac{1}{(q-k)^2 - m^2 + i\varepsilon}$$

- $\hookrightarrow\,$ and take $q\to 0$ limit after doing the integral
 - works to get correlation functions right but not clear how to implement this into a nonperturbative framework

ε coordinates

- key idea: go away from light front (just a little bit)
- \hookrightarrow quantize on a space-like hypersurface (F.Lenz; K.Hornbostel)
 - work in ∞ momentum frame, or
 - modify metric, e.g. $2k^+k^- \longrightarrow 2k^+k^- + \frac{2\varepsilon}{L}k^{-2}$
 - $\hookrightarrow \text{ on finite interval},$

$$\begin{split} &\int \frac{d^2k}{(2\pi)^2} \frac{1}{\left(k^2 - m^2 + i\varepsilon\right)^2} \to \frac{1}{L} \sum_{k+1} \int \frac{dk^-}{2\pi} \frac{1}{\left(2k^+k^- + \frac{2\varepsilon}{L}k^{-2} - m^2 + i\varepsilon\right)^2} = \\ &\frac{i}{4\sqrt{2\varepsilon L}} \sum_{n=-\infty}^{\infty} \left[\frac{(2\pi n)^2}{2\varepsilon L} + m^2 \right]^{-3/2} \end{split}$$

• 'correct' answer only obtained in limit $L \to \infty$ first and then $\frac{\varepsilon}{L} \to 0$