Vacuum and Zero Modes

Much ado about nothing: the LF vacuum

Matthias Burkardt

New Mexico State University

March 16, 2021

- $\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=\frac{i}{4 \pi m^{2}}$ (relevant for self-energy integrals)
- light-cone: $\int \frac{d k^{+} d k^{-}}{(2 \pi)^{2}} \frac{1}{\left(2 k^{+} k^{-}-m^{2}+i \varepsilon\right)^{2}}$
\hookrightarrow pure zero-mode, i.e. (pole structure!) $k^{+}=0$ contribution, i.e. $\int \frac{d k^{-}}{(2 \pi)^{2}} \frac{1}{\left(2 k^{+} k^{-}-m^{2}+i \varepsilon\right)^{2}} \propto \delta\left(k^{+}\right)$
- should we care?
- yes: higher-order diagrams contain terms with this pole structure
- how can we regularize this?
- point-splitting
- ε-coordinates
- $\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=\frac{i}{4 \pi m^{2}}$ (relevant for self-energy integrals)
- light-cone: $\int \frac{d k^{+} d k^{-}}{(2 \pi)^{2}} \frac{1}{\left(2 k^{+} k^{-}-m^{2}+i \varepsilon\right)^{2}}$
\hookrightarrow pure zero-mode, i.e. (pole structure!) $k^{+}=0$ contribution, i.e. $\int \frac{d k^{-}}{(2 \pi)^{2}} \frac{1}{\left(2 k^{+} k^{-}-m^{2}+i \varepsilon\right)^{2}} \propto \delta\left(k^{+}\right)$
- should we care?
- yes: higher-order diagrams contain terms with this pole structure
- how can we regularize this?

point splitting (MB, Lenz, Thies; Brodsky, Lowdon, Mannheim,..

- $\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}} \longrightarrow \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{i\left(x+k^{-}+x^{-}{ }^{+}\right)}}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}$
- evaluate integral for nonzero x^{+}
\hookrightarrow take $x^{+} \rightarrow 0$ limit after doing the integral

point splitting: results

- above procedure yields results that agree with equal time quantization - also in higher orders
- nonperturbative generalization (MB, S.Chabysheva, J.Hiller): evaluate $\langle 0| \phi(0) \phi(x)|0\rangle$ by inserting complete set of intermediate states
- application: constructing 'effective' Hamiltonians

introducing a momentum flow (Collins)

- $\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}} \longrightarrow \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}-m^{2}+i \varepsilon} \frac{1}{(q-k)^{2}-m^{2}+i \varepsilon}$
\hookrightarrow and take $q \rightarrow 0$ limit after doing the integral
- works to get correlation functions right but not clear how to implement this into a nonperturbative framework
- key idea: go away from light front (just a little bit)
\hookrightarrow quantize on a space-like hypersurface (F.Lenz; K.Hornbostel)
- work in ∞ momentum frame, or
- modify metric, e.g. $2 k^{+} k^{-} \longrightarrow 2 k^{+} k^{-}+\frac{2 \varepsilon}{L} k^{-2}$
\hookrightarrow on finite interval,

$$
\begin{aligned}
& \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}} \rightarrow \frac{1}{L} \sum_{k^{+}} \int \frac{d k^{-}}{2 \pi} \frac{1}{\left(2 k^{+} k^{-}+\frac{2 \varepsilon}{L} k^{-2}-m^{2}+i \varepsilon\right)^{2}}= \\
& \frac{i}{4 \sqrt{2 \varepsilon L}} \sum_{n=-\infty}^{\infty}\left[\frac{(2 \pi n)^{2}}{2 \varepsilon L}+m^{2}\right]^{-3 / 2}
\end{aligned}
$$

- 'correct' answer only obtained in limit $L \rightarrow \infty$ first and then $\frac{\varepsilon}{L} \rightarrow 0$

