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Motivation

Long term goal:

Understand passage through phase transitions during real time
evolution

I In the AdS/CFT description, different phases of the field theory are
described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of N = 4 SYM on S3 × R is described
by thermal AdS

2. The high temperature phase is described by an AdS black hole

I These are two distinct (euclidean) backgrounds, the phase transition
occurs when equating the free energies..

I It is very puzzling to consider what happens during real time
evolution...

I To what extent does classical gravitational description suffices?
I Describe bubble nucleation!
I These questions have some very real life applications..
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Concrete (but still a bit far off) physical motivation: heavy-ion
collision at RHIC/LHC:
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Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



Some recent (motivating) developments...

Dynamics in a holographic theory with a 1st order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

I Both phases are deconfined!
I This makes the gravity analysis much

easier (both phases described by
black holes)...

I ... but physically less interesting

5 / 32



We observe dynamically the emergence of domains of coexisting phases

I Initial conditions in the unstable
spinodal regime

I We see two regions of coexisting
phases...

I ... separated by domain walls
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We tried studying a holographic model with a
confinement/deconfinement transition (IHQCD-like)...

Belladuono, RJ, Jankowski, Soltanpanahi

I Standard (Minkowski signature)
classical gravity evolution does not
yield any insight into bubble
nucleation...

I Boost invariant evolution in an
IHQCD model breaks down before
going over to the confined phase...

Here we do not have a gravity setup appropriate for both phases...
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Key questions:

1. Describe (quite generally) domain walls between a confined and
deconfined phase... ←− this work

2. Analyze bubble nucleation... ←− this work

3. Analyze complete real time evolution ←− future work
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The Witten model

I As an example of a holographic theory with a 1st order
confinement/deconfinement phase transition we use (a d = 3 variant
of) the Witten model of ’98

I On the boundary one compactifies a coordinate (φ) on a circle and
imposes anti-periodic boundary conditions for the fermions.

I At low temperatures the bulk geometry of the φ circle closes off into
a cigar, generating confinement

I At high temperatures, the bulk geometry of the Euclidean τ circle
closes off into a cigar instead, leading to the deconfined phase

I In between, there is a 1st order phase transition with equal free
energies (bulk actions)
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The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman ’05

I AMW constructed numerically a static planar domain wall solution
interpolating between confined and deconfined phases

I The numerical relativity setup is very nontrivial due to the different
topologies of the geometries corresponding to the different phases

I It turns out that the physical content of the solution looks
extremely simple from the point of view of the boundary field
theory...

10 / 32



The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman ’05

I AMW constructed numerically a static planar domain wall solution
interpolating between confined and deconfined phases

I The numerical relativity setup is very nontrivial due to the different
topologies of the geometries corresponding to the different phases

I It turns out that the physical content of the solution looks
extremely simple from the point of view of the boundary field
theory...

10 / 32



The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman ’05

I AMW constructed numerically a static planar domain wall solution
interpolating between confined and deconfined phases

I The numerical relativity setup is very nontrivial due to the different
topologies of the geometries corresponding to the different phases

I It turns out that the physical content of the solution looks
extremely simple from the point of view of the boundary field
theory...

10 / 32



The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman ’05

I AMW constructed numerically a static planar domain wall solution
interpolating between confined and deconfined phases

I The numerical relativity setup is very nontrivial due to the different
topologies of the geometries corresponding to the different phases

I It turns out that the physical content of the solution looks
extremely simple from the point of view of the boundary field
theory...

10 / 32



The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman ’05

I AMW constructed numerically a static planar domain wall solution
interpolating between confined and deconfined phases

I The numerical relativity setup is very nontrivial due to the different
topologies of the geometries corresponding to the different phases

I It turns out that the physical content of the solution looks
extremely simple from the point of view of the boundary field
theory...

10 / 32



What is the physical content of a given geometry?

I From a given geometry we can extract the profile of the
energy-momentum tensor of the boundary theory

I For a 5D bulk we have

ds2 =
gµν(x , z)dxµdxν + dz2

z2

with
gµν(x , z) = ηµν + 〈Tµν(x)〉z4 + . . .

I Conversely, given 〈Tµν(x)〉, we can in principle reconstruct back the
geometry (in the absence of other fields)...

11 / 32



What is the physical content of a given geometry?

I From a given geometry we can extract the profile of the
energy-momentum tensor of the boundary theory

I For a 5D bulk we have

ds2 =
gµν(x , z)dxµdxν + dz2

z2

with
gµν(x , z) = ηµν + 〈Tµν(x)〉z4 + . . .

I Conversely, given 〈Tµν(x)〉, we can in principle reconstruct back the
geometry (in the absence of other fields)...

11 / 32



What is the physical content of a given geometry?

I From a given geometry we can extract the profile of the
energy-momentum tensor of the boundary theory

I For a 5D bulk we have

ds2 =
gµν(x , z)dxµdxν + dz2

z2

with
gµν(x , z) = ηµν + 〈Tµν(x)〉z4 + . . .

I Conversely, given 〈Tµν(x)〉, we can in principle reconstruct back the
geometry (in the absence of other fields)...

11 / 32



What is the physical content of a given geometry?

I From a given geometry we can extract the profile of the
energy-momentum tensor of the boundary theory

I For a 5D bulk we have

ds2 =
gµν(x , z)dxµdxν + dz2

z2

with
gµν(x , z) = ηµν + 〈Tµν(x)〉z4 + . . .

I Conversely, given 〈Tµν(x)〉, we can in principle reconstruct back the
geometry (in the absence of other fields)...

11 / 32



〈Tµν(x)〉 for the AMW domain wall solution:

I 1
2 (Ttt + Tφφ) from the numerical
holographic AMW solution

I Excellent fit by

1
2

(
1 + tanh

q∗x
2

)

I Txx − Tyy looks more nontrivial
I Can be fit by

c

cosh2 q∗x2
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The surprising simplicity extends also to other holographic models!

I A gravity+scalar system with a phase transition between two types
of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]

I Independently observed for various holographic 4D theories (with
phase transitions between deconfined phases)

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao
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Interim discussion:

I The surprising simplicity of 〈Tµν(x)〉, suggests that perhaps one can
find a description purely in terms of the field theory
energy-momentum tensor...

I For cases with both deconfined phases, Mateos et.al. proposed a
hydrodynamic description...

I This does not apply when we have a confining phase as we cannot
describe it within hydrodynamics — we need to extend
hydrodynamics by a new degree of freedom...

I We would like to have a description where the simple tanh profiles
would naturally emerge analytically...
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Construct a model directly for the energy-momentum tensor...

15 / 32



The deconfined phase

I In the deconfined phase we model the system by hydrodynamics
I We neglect dissipative terms and just keep the leading perfect-fluid

part
T deconfµν = phydro(T ) (ηµν + 4uµuν)

(here we used tracelessness, valid for the d = 3 Witten model,
consequently phydro(T ) ∝ T 4)

I In the Witten model, on the boundary we have the auxiliary φ circle:
1. We assume no dependence on φ
2. We assume that no flow occurs in the φ direction

uµn
µ = 0

where nµ is a unit vector in the φ direction

I Using fluid/gravity duality, the dual geometry looks like a locally
boosted (in the direction of flow velocity uµ) black hole
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Confined phase

I The confined phase energy-momentum tensor can be read off from
the gravitational solution

T confµν = ηµν − 4nµnν

I In the physical 3D space (i.e. excluding the auxiliary φ circle) we
have full Lorentz symmetry

I The 1st order phase transition temperature is given (in the above
units) by

phydro(Tc) = 1
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The domain wall

I The domain wall configuration should interpolate between the two
energy-momentum tensors (here phydro(Tc) = 1)

T confµν = ηµν−4nµnν and T deconfµν = phydro(T ) (ηµν + 4uµuν)

I The two energy-momentum tensors have quite a different form...
I Introduce a new degree of freedom γ(x)

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

I Ultimately we would like γ(x) to be equal to

γ(x) =
1
2

(
1 + tanh

q∗x
2

)
(but we would like this to follow from some equations!)
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Does introducing γ(x) make sense??

I It is instructive to first consider γ(x) to be very small...

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

I The dual geometry will be a black hole with a small perturbation
∝ γ(x)...

I At the linearized level, this will be a slightly non-standard
quasi-normal mode...

I Since the domain wall builds up exponentially

γ(x) ∼ eq∗x

the QNM will have purely imaginary momentum and vanishing
frequency (static configuration)

I Such QNM’s were first introduced by Sonner in the context of
domain walls...

I Since this gravitational degree of freedom is very much relevant for
the transition between the two phases, we should build it in into the
desired effective description
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Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



Is Tmixµν (x) enough to describe the domain wall?

Tmixµν (x) = γ(x)T confµν (x) + (1− γ(x))T deconfµν (x)

Answer: No

We are missing contributions localized at the domain wall...

I Txx − Tyy is an example
(x ⊥, y ‖ domain wall)

I Responsible for the surface tension
of the domain wall

Tµν(x) = Tmixµν (x) + TΣ
µν(x)

20 / 32



How to determine TΣ
µν(x)?

I We do not have any guidance from known phases...
I We have an additional unit vector perpendicular to the domain wall
vµ...

I Build up the most general expression from elementary tensors

ηµν , uµuν , vµvν , nµnν

I We know from the AMW solution that nondiagonal combinations do
not appear (unless proportional to (u · v))

I We get

TΣ
µν = Σ (−ηµν + Avµvν − Buµuν − Cnµnν)

I Σ and A, B, C have to be determined...
I We assume that Σ is nonzero only in the vicinity of the domain wall
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TΣ
µν = Σ (−ηµν + Avµvν − Buµuν − Cnµnν)

I For the planar AMW domain wall in the x direction,
energy-momentum conservation implies that

Txx = const =⇒ TΣ
xx = 0

I It follows that A = 1
I From tracelessness, we get C = B − 3
I To determine Σ and B, we need to turn to the numerical AMW

domain wall solution...
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TΣ
µν = Σ (−ηµν + vµvν − Buµuν + (3− B)nµnν)

I Σ can be obtained by comparing with Txx − Tyy

Σ = c · γ′2

γ(1− γ)

I The integral of Σ is the domain wall surface tension
I Subsequently B can be obtained from any other component e.g. Ttt

It turns out that
B = 1 + γ
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The AMW domain wall energy-momentum tensor, written in a covariant
way is fitted very well by

γT confµν + (1− γ)T deconfµν︸ ︷︷ ︸
Tmixµν

+
cγ′2

γ(1− γ)
(−ηµν + vµvν − (1 + γ)uµuν + (2− γ)nµnν)︸ ︷︷ ︸

TΣ
µν

with

γ(x) =
1
2

(
1 + tanh

q∗x
2

)
Questions:

1. What are the equations of motion for γ?

2. Can we write an action for γ so that TΣ
µν will arise as the

corresponding energy-momentum tensor?
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Equations for tanh

γ(x) =
1
2

(
1 + tanh

q∗x
2

)
follows from

γ′ =
√

2V (γ) with V (γ) =
q2∗
2
γ2(1− γ)2

I This is a solution of the equations of motion for an action

Lγ = −a(γ)

(
1
2

(∂γ)2 + V (γ)

)
with any prefactor a(γ)

I We are not done yet, as we do not have any coupling to the
hydrodynamic degrees of freedom, so we cannot reproduce the uµuν

terms in TΣ
µν
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Interlude: An action formulation for hydrodynamics

I Dubovsky, Hui, Nicolis, Son considered an action formulation for
hydrodynamics, however it convenient to use a reformulation by
Haehl, Loganayagam, and Rangamani which reproduces the
holographic Euclidean on-shell action...

I Recall the hydrodynamic energy-momentum tensor

T deconfµν = p(T ) (ηµν + 4uµuν)

I The degrees of freedom are T and the flow velocity uµ (normalized
as u2 = −1)

I In the action formulation, one uses instead an unnormalized vector
field βµ whose length is related to the temperature

T =
1√

−gµνβµβν
uµ = Tβµ

I It turns out that the lagrangian

Lhydro = p(T )

reproduces exactly the hydrodynamic energy-momentum tensor...
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Action formulation

I The linear combination of the confining and deconfined
energy-momentum tensors

Tmixµν = γT confµν + (1− γ)T deconfµν

follows from the Lagrangian

L = (1− γ)p(T ) + γ

I In order to couple the scalar field action for γ to hydrodynamic
degrees of freedom, it is enough to add T dependence (recall
T ≡ 1/

√
−gµνβµβν)

Lγ = −a(γ,T )

(
1
2

(∂γ)2 + V (γ,T )

)
I For simplicity we take (around T ∼ Tc ≡ 1)

a(γ,T ) = Tαa(γ) V (γ,T ) = TβV (γ)
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Action formulation

Lγ = −a(γ)Tα
(

1
2

(∂γ)2 + TβV (γ)

)
leads to the energy momentum tensor (evaluated at T = Tc = 1)

TΣ
µν = a(γ)

[
∂µγ∂νγ −

(
1
2

(∂γ)2 + V
)
gµν −

(
α(∂γ)2 + (α + β)V

)
uµuν

]
Evaluated on a solution satisfying γ′ =

√
2V (γ) we get

TΣ
µν = a(γ)

∂µγ∂νγ︸ ︷︷ ︸
(∂γ)2vµvν

−(∂γ)2ηµν − (∂γ)2
(

3
2
α +

1
2
β

)
uµuν


With

a(γ) =
const

γ(1− γ)

3
2
α +

1
2
β = 1 + γ

we reproduce the expression fit to the AMW numerical domain wall
solution...
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Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Action formulation

We find a very simple description:

L = [(1− γ)p(T ) + γ]− cTα

γ(1− γ)

(
1
2

(∂γ)2 + Tβ
q2∗
2
γ2(1− γ)2

)

leading to the energy momentum tensor

Tµν = (1− γ)T deconfµν + γT confµν + TΣ
µν

I The mixing terms in square brackets lead to an effectively
asymmetric potential away from T = Tc

I We believe that the overall structure is very generic and should be
applicable to numerous other contexts with a 1st order phase
transition

Tµν = (1− γ)T phase Aµν + γT phase Bµν + TΣ
µν

29 / 32



Thermodynamic nucleation probability

I From equilibrium thermodynamics one can compute the probability
of nucleation of a bubble of a different phase

(c.f. Landau, Statistical Physics)
I The probability is given by a difference of thermodynamic potentials,

which include a contribution of the surface tension of the interface...

Ωbefore = −P(V + Vdroplet) Ωafter = −PV − PdropletVdroplet + ΣA

then

probability ∝ e− 1T (Ωafter−Ωbefore) = e−
1
T (−(Pdroplet−P)Vdroplet+ΣA)

How to reproduce this in our framework?
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Thermodynamic nucleation probability
I Coleman introduced an Euclidean picture of tunneling as

instanton/bounce solutions in QFT...
I This was generalized by Linde ’81 to the finite temperature case

I In case d) we need the Euclidean action of a static bubble with
thermal periodicity

I The action density can be read off from the coefficient of ηµν in Tµν

LE (x) = −P(x) + Σ(x)

I In the thin wall approximation we reproduce Landau’s result e.g.

Son−shellafter =

∫
LE (x)dτd2xdφ = − 1

T
(PV + PdropletVdroplet − ΣA)

see also Bigazzi, Caddeo, Cotrone, Paredes for a gravitational perspective31 / 32
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Conclusions

I The structure of domain walls is much simpler than one could
expect from the complicated numerical gravitational backgrounds

I This suggests that one could model them directly on the level of the
boundary field theory energy-momentum tensor

I The incorporation of confining phases necessitates the introduction
of an additional degree of freedom γ

I We proposed a structure of the energy-momentum tensor describing
domains of both phases separated by domain walls

I We proposed an action for the scalar field γ coupled to
hydrodynamic degrees of freedom

I The tanh profiles are obtained analytically from this model
I One needs more holographic solutions for going away from T = Tc

and taking into accounts effects of flow (terms like uµ∂µγ)
I We believe that the overall framework is applicable in a very

general context of coexisting phases and domain walls – even
outside holography...
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