Domain walls in confining theories, holography and extended hydrodynamics

Romuald A. Janik
Jagiellonian University
Kraków

RJ, M. Järvinen, J. Sonnenschein 2105.XXXX

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution

Modeling the energy-momentum tensor

Formulation in terms of an action

Application: Thermodynamic nucleation probability

Conclusions

Outline

Motivation
Long-term goal
Some recent developments
Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution

Modeling the energy-momentum tensor

Formulation in terms of an action

Application: Thermodynamic nucleation probability

Conclusions

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution
Modeling the energy-momentum tensor

Formulation in terms of an action
Application: Thermodynamic nucleation probability
Conclusions

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution
Modeling the energy-momentum tensor
Formulation in terms of an action
Application: Thermodynamic nucleation probability
Conclusions

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution
Modeling the energy-momentum tensor
Formulation in terms of an action
Application: Thermodynamic nucleation probability
Conclusions

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution
Modeling the energy-momentum tensor
Formulation in terms of an action

Application: Thermodynamic nucleation probability

Conclusions

Outline

Motivation
Long-term goal
Some recent developments Goal for this work

Witten model

The Aharony-Minwalla-Weisman domain wall solution
Modeling the energy-momentum tensor
Formulation in terms of an action

Application: Thermodynamic nucleation probability

Conclusions

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications..

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications..

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

```
- In the AdS/CFT description, different phases of the field theory are
    described by distinct dual 10D gravitational backgrounds e.g.
        1. The low temperature phase of }\mathcal{N}=4SYM on S3\times\mathbb{R}\mathrm{ is described
            by thermal AdS
    2. The high temperature phase is described by an AdS black hole
* These are two distinct (euclidean) backgrounds, the phase transition
    occurs when equating the free energies.
    * It is very puzzling to consider what happens during real time
    evolution.
    * To what extent does classical gravitational description suffices?
    - Describe bubble nucleation!
    * These questions have some very real life applications.
```


Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

```
    1. The low temperature phase of N}=4\textrm{SYM}\mathrm{ on S
            by thermal AdS
        2. The high temperature phase is described by an AdS black hole
* These are two distinct (euclidean) backgrounds, the phase transition
    occurs when equating the free energies.
    - It is very puzzling to consider what happens during real time
    evolution.
* To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
* These questions have some very real life applications.
```


Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies.
- It is very puzzling to consider what happens during real time evolution..
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications.

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies.
- It is very puzzling to consider what happens during real time evolution.
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications.

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
$>$ It is very puzzling to consider what happens during real time evolution..
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications..

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications.

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications.

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications.

Motivation

Long term goal:

Understand passage through phase transitions during real time evolution

- In the AdS/CFT description, different phases of the field theory are described by distinct dual 10D gravitational backgrounds e.g.

1. The low temperature phase of $\mathcal{N}=4 \mathrm{SYM}$ on $S^{3} \times \mathbb{R}$ is described by thermal AdS
2. The high temperature phase is described by an AdS black hole

- These are two distinct (euclidean) backgrounds, the phase transition occurs when equating the free energies..
- It is very puzzling to consider what happens during real time evolution...
- To what extent does classical gravitational description suffices?
- Describe bubble nucleation!
- These questions have some very real life applications..

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

$$
|\rightarrow \leftarrow| \quad \text { Collision }
$$

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

$$
|\rightarrow \leftarrow| \quad \text { Collision } \quad \begin{array}{ll}
1 \rightarrow 1 & \text { Fireball }
\end{array}
$$

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

$$
\rightarrow \leftarrow \left\lvert\, \begin{aligned}
& \text { Collision } \\
& \text { Fireball } \\
& \text { isotropization } \\
& \text { thermalization }
\end{aligned}\right.
$$

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

$$
\rightarrow \leftarrow \left\lvert\,\right.
$$

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:
$\mid \rightarrow \leftarrow 1$
1

Collision

Fireball
hydrodynamic expansion

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:
$\mid \rightarrow \leftarrow 1$
,

Collision

Fireball
hydrodynamic expansion
freezout
hadronization

Motivation

Concrete (but still a bit far off) physical motivation: heavy-ion collision at RHIC/LHC:

Some recent (motivating) developments...
Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuo o
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes)...
- ... but physically less interesting

Some recent (motivating) developments...

Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes).
- ... but physically less interesting

Some recent (motivating) developments...

Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes).
- ... but physically less interesting

Some recent (motivating) developments...
Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes)
- ... but physically less interesting

Some recent (motivating) developments...

Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes)...

Some recent (motivating) developments...

Dynamics in a holographic theory with a $1^{\text {st }}$ order phase transition...
RJ, Jankowski, Soltanpanahi, Belladuono
Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

- Both phases are deconfined!
- This makes the gravity analysis much easier (both phases described by black holes)...
- ... but physically less interesting

We observe dynamically the emergence of domains of coexisting phases

We observe dynamically the emergence of domains of coexisting phases

- Initial conditions in the unstable spinodal regime
- We see two regions of coexisting phases...
- ... separated by domain walls

We observe dynamically the emergence of domains of coexisting phases

- Initial conditions in the unstable spinodal regime
- We see two regions of coexisting phases...
- ... separated by domain walls

We observe dynamically the emergence of domains of coexisting phases

- Initial conditions in the unstable spinodal regime
- We see two regions of coexisting phases...
- ... separated by domain walls

We tried studying a holographic model with a confinement/deconfinement transition (IHQCD-like)...

Belladuono, RJ, Jankowski, Soltanpanahi
> - Standard (Minkowski signature) classical gravity evolution does not yield any insight into bubble nucleation..
> - Boost invariant evolution in an IHQCD model breaks down before going over to the confined phase...

We tried studying a holographic model with a confinement/deconfinement transition (IHQCD-like)...

Belladuono, RJ, Jankowski, Soltanpanahi

- Standard (Minkowski signature) classical gravity evolution does not yield any insight into bubble nucleation...
- Boost invariant evolution in an IHQCD model breaks down before going over to the confined phase...

Here we do not have a gravity setup appropriate for both phases...

> We tried studying a holographic model with a confinement/deconfinement transition (IHQCD-like)...
> Belladuono, RJ, Jankowski, Soltanpanahi

- Standard (Minkowski signature) classical gravity evolution does not yield any insight into bubble nucleation...
- Boost invariant evolution in an IHQCD model breaks down before going over to the confined phase...

> We tried studying a holographic model with a confinement/deconfinement transition (IHQCD-like)...
> Belladuono, RJ, Jankowski, Soltanpanahi

- Standard (Minkowski signature) classical gravity evolution does not yield any insight into bubble nucleation...
- Boost invariant evolution in an IHQCD model breaks down before going over to the confined phase...

We tried studying a holographic model with a confinement/deconfinement transition (IHQCD-like)...

Belladuono, RJ, Jankowski, Soltanpanahi

- Standard (Minkowski signature) classical gravity evolution does not yield any insight into bubble nucleation...
- Boost invariant evolution in an IHQCD model breaks down before going over to the confined phase...

Here we do not have a gravity setup appropriate for both phases...

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation... \longleftarrow this work
3. Analyze complete real time evolution

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
2. Analyze bubble nucleation...
3. Analyze complete real time evolution

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation...
3. Analyze complete real time evolution
future work

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation...
3. Analyze complete real time evolution
future work

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation...
\longleftarrow this work
3. Analyze complete real time evolution
future work

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation...
\longleftarrow this work
3. Analyze complete real time evolution

Key questions:

1. Describe (quite generally) domain walls between a confined and deconfined phase...
\longleftarrow this work
2. Analyze bubble nucleation...
\longleftarrow - this work
3. Analyze complete real time evolution
\longleftarrow future work

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
$>$ On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement
- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase
- In between, there is a $1^{\text {st }}$ order phase transition with equal free energies (bulk actions)

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
- On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement
- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase
- In between, there is a $1^{\text {st }}$ order phase transition with equal free energies (bulk actions)

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
- On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement
- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase
- In between, there is a $1^{\text {st }}$ order phase transition with equal free energies (bulk actions)

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
- On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement

- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase

- In between, there is a $1^{\text {st }}$ order phase transition with equal free energies (bulk actions)

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
- On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement
- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase energies (bulk actions)

The Witten model

- As an example of a holographic theory with a $1^{\text {st }}$ order confinement/deconfinement phase transition we use (a $d=3$ variant of) the Witten model of '98
- On the boundary one compactifies a coordinate (ϕ) on a circle and imposes anti-periodic boundary conditions for the fermions.
- At low temperatures the bulk geometry of the ϕ circle closes off into a cigar, generating confinement
- At high temperatures, the bulk geometry of the Euclidean τ circle closes off into a cigar instead, leading to the deconfined phase
- In between, there is a $1^{\text {st }}$ order phase transition with equal free energies (bulk actions)

low temperature phase

X_{i}
high temperature phase

The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman '05

- AMW constructed numerically a static planar domain wall solution interpolating between confined and deconfined phases
- The numerical relativity setup is very nontrivial due to the different topologies of the geometries corresponding to the different phases
- It turns out that the physical content of the solution looks extremely simple from the point of view of the boundary field theory...

The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman '05

- AMW constructed numerically a static planar domain wall solution interpolating between confined and deconfined phases
- The numerical relativity setup is very nontrivial due to the different topologies of the geometries corresponding to the different phases
- It turns out that the physical content of the solution looks extremely simple from the point of view of the boundary field theory...

The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman '05

- AMW constructed numerically a static planar domain wall solution interpolating between confined and deconfined phases
- The numerical relativity setup is very nontrivial due to the different topologies of the geometries corresponding to the different phases
- It turns out that the physical content of the solution looks extremely simple from the point of view of the boundary field theory...

The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman '05

- AMW constructed numerically a static planar domain wall solution interpolating between confined and deconfined phases
- The numerical relativity setup is very nontrivial due to the different topologies of the geometries corresponding to the different phases

- It turns out that the physical content of the solution looks extremely simple from the point of view of the boundary field theory.

The Aharony-Minwalla-Weisman domain wall solution

Aharony, Minwalla, Weisman '05

- AMW constructed numerically a static planar domain wall solution interpolating between confined and deconfined phases
- The numerical relativity setup is very nontrivial due to the different topologies of the geometries corresponding to the different phases

- It turns out that the physical content of the solution looks extremely simple from the point of view of the boundary field theory...

What is the physical content of a given geometry?

- From a given geometry we can extract the profile of the energy-momentum tensor of the boundary theory
- For a 5D bulk we have

with

$$
g_{\mu \nu}(x, z)=\eta_{\mu \nu}+\left\langle T_{\mu \nu}(x)\right\rangle z^{4}+
$$

- Conversely, given $\left\langle T_{\mu \nu}(x)\right\rangle$, we can in principle reconstruct back the geometry (in the absence of other fields)...

What is the physical content of a given geometry?

- From a given geometry we can extract the profile of the energy-momentum tensor of the boundary theory
- For a 5D bulk we have

with

- Conversely, given $\left\langle T_{\mu \nu}(x)\right\rangle$, we can in principle reconstruct back the geometry (in the absence of other fields)...

What is the physical content of a given geometry?

- From a given geometry we can extract the profile of the energy-momentum tensor of the boundary theory
- For a 5D bulk we have

$$
d s^{2}=\frac{g_{\mu \nu}(x, z) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}
$$

with

$$
g_{\mu \nu}(x, z)=\eta_{\mu \nu}+\left\langle T_{\mu \nu}(x)\right\rangle z^{4}+\ldots
$$

- Conversely, given $\left\langle T_{\mu \nu}(x)\right\rangle$, we can in principle reconstruct back the geometry (in the absence of other fields)..

What is the physical content of a given geometry?

- From a given geometry we can extract the profile of the energy-momentum tensor of the boundary theory
- For a 5D bulk we have

$$
d s^{2}=\frac{g_{\mu \nu}(x, z) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}
$$

with

$$
g_{\mu \nu}(x, z)=\eta_{\mu \nu}+\left\langle T_{\mu \nu}(x)\right\rangle z^{4}+\ldots
$$

- Conversely, given $\left\langle T_{\mu \nu}(x)\right\rangle$, we can in principle reconstruct back the geometry (in the absence of other fields)...
$\left\langle T_{\mu \nu}(x)\right\rangle$ for the AMW domain wall solution:

- $\frac{1}{2}\left(T_{t t}+T_{\phi \phi}\right)$ from the numerical holographic AMW solution - Excellent fit by

- $T_{x x}-T_{y y}$ looks more nontrivial
- Can be fit by

$\left\langle T_{\mu \nu}(x)\right\rangle$ for the AMW domain wall solution:

- $\frac{1}{2}\left(T_{t t}+T_{\phi \phi}\right)$ from the numerical holographic AMW solution

- Excellent fit by

- $T_{x x}-T_{y y}$ looks more nontrivial
- Can be fit by
$\left\langle T_{\mu \nu}(x)\right\rangle$ for the AMW domain wall solution:

- $\frac{1}{2}\left(T_{t t}+T_{\phi \phi}\right)$ from the numerical holographic AMW solution
- Excellent fit by

$$
\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

- $T_{x x}-T_{y y}$ looks more nontrivial
- Can be fit by
$\left\langle T_{\mu \nu}(x)\right\rangle$ for the AMW domain wall solution:

- $\frac{1}{2}\left(T_{t t}+T_{\phi \phi}\right)$ from the numerical holographic AMW solution
- Excellent fit by

$$
\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

- $T_{x x}-T_{y y}$ looks more nontrivial
- Can be fit by
$\left\langle T_{\mu \nu}(x)\right\rangle$ for the AMW domain wall solution:

- $\frac{1}{2}\left(T_{t t}+T_{\phi \phi}\right)$ from the numerical holographic AMW solution
- Excellent fit by

$$
\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

- $T_{x x}-T_{y y}$ looks more nontrivial
- Can be fit by

$$
\frac{c}{\cosh ^{2} \frac{q_{* *}}{2}}
$$

The surprising simplicity extends also to other holographic models!

```
- A gravity+scalar system with a phase transition between two types
of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]
```

- Independently observed for various holographic 4D theories (with phase transitions between deconfined phases)

The surprising simplicity extends also to other holographic models!

- A gravity+scalar system with a phase transition between two types of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]
- Independently observed for various holographic 4D theories (with phase transitions between deconfined phases)

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

The surprising simplicity extends also to other holographic models!

- A gravity+scalar system with a phase transition between two types of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]

- Independently observed for various holographic 4D theories (with phase transitions between deconfined phases)

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

The surprising simplicity extends also to other holographic models!

- A gravity+scalar system with a phase transition between two types of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]

- Independently observed for various holographic 4D theories (with phase transitions between deconfined phases)

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

The surprising simplicity extends also to other holographic models!

- A gravity+scalar system with a phase transition between two types of plasma (3D theory) data from [RJ, Jankowski, Soltanpanahi]

- Independently observed for various holographic 4D theories (with phase transitions between deconfined phases)

Attems, Bea, Casalderrey-Solana, Mateos, Zilhao

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description...
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically...

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description.
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically..

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description...
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically...

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description...
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend
hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically.

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description...
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically..

Interim discussion:

- The surprising simplicity of $\left\langle T_{\mu \nu}(x)\right\rangle$, suggests that perhaps one can find a description purely in terms of the field theory energy-momentum tensor...
- For cases with both deconfined phases, Mateos et.al. proposed a hydrodynamic description...
- This does not apply when we have a confining phase as we cannot describe it within hydrodynamics - we need to extend hydrodynamics by a new degree of freedom...
- We would like to have a description where the simple tanh profiles would naturally emerge analytically...

Construct a model directly for the energy-momentum tensor...

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $p_{\text {hydro }}(T) \propto T^{4}$)

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction

$$
u_{\mu} n^{\mu}=0
$$

where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model consequently $p_{\text {hydro }}(T) \propto T^{4}$

- In the Witten model, on the boundary we have the auxiliary ϕ circle: 1. We assume no dependence on ϕ

2. We assume that no flow occurs in the ϕ direction
where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle: 1. We assume no dependence on ϕ
 2. We assume that no flow occurs in the ϕ direction

where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

consequently $p_{\text {hydro }}(T) \propto T^{4}$)

- In the Witten model, on the boundary we have the auxiliary ϕ circle:
 1. We assume no dependence on ϕ
 2. We assume that no flow occurs in the ϕ direction

where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction
where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction
where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction
where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction

$$
u_{\mu} n^{\mu}=0
$$

where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

The deconfined phase

- In the deconfined phase we model the system by hydrodynamics
- We neglect dissipative terms and just keep the leading perfect-fluid part

$$
T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

(here we used tracelessness, valid for the $d=3$ Witten model, consequently $\left.p_{\text {hydro }}(T) \propto T^{4}\right)$

- In the Witten model, on the boundary we have the auxiliary ϕ circle:

1. We assume no dependence on ϕ
2. We assume that no flow occurs in the ϕ direction

$$
u_{\mu} n^{\mu}=0
$$

where n^{μ} is a unit vector in the ϕ direction

- Using fluid/gravity duality, the dual geometry looks like a locally boosted (in the direction of flow velocity u^{μ}) black hole

Confined phase

- The confined phase energy-momentum tensor can be read off from the gravitational solution

$$
T_{\mu \nu}^{c o n f}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu}
$$

- In the physical 3D space (i.e. excluding the auxiliary ϕ circle) we have full Lorentz symmetry
The $1^{\text {st }}$ order phase transition temperature is given (in the above units) by

$$
p_{\text {hydro }}\left(T_{c}\right)=1
$$

Confined phase

- The confined phase energy-momentum tensor can be read off from the gravitational solution

$$
T_{\mu \nu}^{c o n f}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu}
$$

- In the physical 3D space (i.e. excluding the auxiliary ϕ circle) we have full Lorentz symmetry
- The $1^{\text {st }}$ order phase transition temperature is given (in the above units) by

$$
p_{\text {hydro }}\left(T_{c}\right)=1
$$

Confined phase

- The confined phase energy-momentum tensor can be read off from the gravitational solution

$$
T_{\mu \nu}^{c o n f}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu}
$$

- In the physical 3D space (i.e. excluding the auxiliary ϕ circle) we have full Lorentz symmetry
- The $1^{\text {st }}$ order phase transition temperature is given (in the above units) by

$$
p_{\text {hydro }}\left(T_{c}\right)=1
$$

Confined phase

- The confined phase energy-momentum tensor can be read off from the gravitational solution

$$
T_{\mu \nu}^{c o n f}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu}
$$

- In the physical 3D space (i.e. excluding the auxiliary ϕ circle) we have full Lorentz symmetry
- The $1^{\text {st }}$ order phase transition temperature is given (in the above units) by

$$
p_{\text {hydro }}\left(T_{c}\right)=1
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- Ultimately we would like $\gamma(x)$ to be equal to

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)
$T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad$ and $\quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)$
- The two energy-momentum tensors have quite a different form... - Introduce a new degree of freedom $\gamma(x)$

- Ultimately we would like $\gamma(x)$ to be equal to

$$
h(x)=\frac{1}{2}\left(1+\tanh \frac{q x}{2}\right)
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$ $T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)$
- Ultimately we would like $\gamma(x)$ to be equal to

$$
f(x)=\frac{1}{2}\left(1+\tanh \frac{q x}{2}\right)
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$

- Ultimately we would like $\gamma(x)$ to be equal to

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- Ultimately we would like $\gamma(x)$ to be equal to

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- Ultimately we would like $\gamma(x)$ to be equal to

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

The domain wall

- The domain wall configuration should interpolate between the two energy-momentum tensors (here $p_{\text {hydro }}\left(T_{c}\right)=1$)

$$
T_{\mu \nu}^{\text {conf }}=\eta_{\mu \nu}-4 n_{\mu} n_{\nu} \quad \text { and } \quad T_{\mu \nu}^{\text {deconf }}=p_{\text {hydro }}(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The two energy-momentum tensors have quite a different form...
- Introduce a new degree of freedom $\gamma(x)$

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- Ultimately we would like $\gamma(x)$ to be equal to

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially

$$
\gamma(x) \sim e^{q_{*} x}
$$

the QNM will have purely imaginary momentum and vanishing frequency (static configuration)

- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode.
- Since the domain wall builds up exponentially $\gamma(x) \sim e^{q_{*} x}$
the QNM will have purely imaginary momentum and vanishing frequency (static configuration)
- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode.
- Since the domain wall builds up exponentially
the QNM will have purely imaginary momentum and vanishing frequency (static configuration)
- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation
- At the linearized level, this will be a slightly non-standard quasi-normal mode..
- Since the domain wall builds up exponentially
the QNM will have purely imaginary momentum and vanishing frequency (static configuration)
- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode..
- Since the domain wall builds up exponentially
the QNM will have purely imaginary momentum and vanishing frequency (static configuration)
- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\alpha \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially
the QNM will have purely imaginary momentum and vanishing frequency (static configuration)
- Such QNM's were first întroduced by Sonner in the context of domain walls.
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\alpha \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially

$$
\gamma(x) \sim e^{q_{*} x}
$$

the QNM will have purely imaginary momentum and vanishing frequency (static configuration)

- Such QNM's were first introduced by Sonner in the context of domain walls.
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\alpha \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially

$$
\gamma(x) \sim e^{q_{*} x}
$$

the QNM will have purely imaginary momentum and vanishing frequency (static configuration)

- Such QNM's were first introduced by Sonner in the context of domain walls.
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{c o n f}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially

$$
\gamma(x) \sim e^{q_{*} x}
$$

the QNM will have purely imaginary momentum and vanishing frequency (static configuration)

- Such QNM's were first introduced by Sonner in the context of domain walls...
\rightarrow Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Does introducing $\gamma(x)$ make sense??

- It is instructive to first consider $\gamma(x)$ to be very small...

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{c o n f}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

- The dual geometry will be a black hole with a small perturbation $\propto \gamma(x) \ldots$
- At the linearized level, this will be a slightly non-standard quasi-normal mode...
- Since the domain wall builds up exponentially

$$
\gamma(x) \sim e^{q_{*} x}
$$

the QNM will have purely imaginary momentum and vanishing frequency (static configuration)

- Such QNM's were first introduced by Sonner in the context of domain walls...
- Since this gravitational degree of freedom is very much relevant for the transition between the two phases, we should build it in into the desired effective description

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

- $T_{x x}-T_{y y}$ is an example

$$
(x \perp, y \| \text { domain wall })
$$

- Responsible for the surface tension of the domain wall

$$
T_{\mu \nu}(x)=T_{\mu \nu}^{m i x}(x)+T_{\mu \nu}^{\sum}(x)
$$

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{\text {mix }}(x)=\gamma(x) T_{\mu \nu}^{\text {conf }}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

- $T_{x x}-T_{y y}$ is an example

$$
\text { (} x \perp, y \| \text { domain wall })
$$

$T_{\mu \nu}(x)=T_{\mu \nu}^{m i x}(x)+T_{\mu \nu}^{\sum}(x)$

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{c o n f}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

- $T_{x x}-T_{y y}$ is an example

$$
\text { (} x \perp, y \| \text { domain wall })
$$

- Responsible for the surface tension of the domain wall
$T_{\mu \nu}(x)=T_{\mu \nu}^{m i x}(x)+T_{\mu \nu}^{\sum}(x)$

Is $T_{\mu \nu}^{m i x}(x)$ enough to describe the domain wall?

$$
T_{\mu \nu}^{m i x}(x)=\gamma(x) T_{\mu \nu}^{c o n f}(x)+(1-\gamma(x)) T_{\mu \nu}^{\text {deconf }}(x)
$$

Answer: No

We are missing contributions localized at the domain wall...

- $T_{x x}-T_{y y}$ is an example ($x \perp, y \|$ domain wall)
- Responsible for the surface tension of the domain wall

$$
T_{\mu \nu}(x)=T_{\mu \nu}^{m i x}(x)+T_{\mu \nu}^{\sum}(x)
$$

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad \bar{n}_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to $(u \cdot v)$)
- We get

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v)
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that \sum is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to ($u \cdot v$)
- We get

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v))
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v))
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v))
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v))
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

How to determine $T_{\mu \nu}^{\sum}(x)$?

- We do not have any guidance from known phases...
- We have an additional unit vector perpendicular to the domain wall v^{μ}...
- Build up the most general expression from elementary tensors

$$
\eta_{\mu \nu}, \quad u_{\mu} u_{\nu}, \quad v_{\mu} v_{\nu}, \quad n_{\mu} n_{\nu}
$$

- We know from the AMW solution that nondiagonal combinations do not appear (unless proportional to (u v v))
- We get

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- Σ and A, B, C have to be determined...
- We assume that Σ is nonzero only in the vicinity of the domain wall

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- For the planar AMW domain wall in the x direction, energy-momentum conservation implies that

$$
T_{x x}=\text { const } \quad \Longrightarrow \quad T_{x x}^{\sum}=0
$$

- It follows that $A=1$
- From tracelessness, we get $C=B-3$
- To determine Σ and B, we need to turn to the numerical AMW domain wall solution...

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- For the planar AMW domain wall in the x direction, energy-momentum conservation implies that

$$
T_{x x}=\text { const } \quad \Longrightarrow \quad T_{x x}^{\Sigma}=0
$$

- It follows that $A=1$
- From tracelessness, we get $C=B-3$
- To determine Σ and B, we need to turn to the numerical AMW domain wall solution..

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- For the planar AMW domain wall in the x direction, energy-momentum conservation implies that

$$
T_{x x}=\text { const } \quad \Longrightarrow \quad T_{x x}^{\Sigma}=0
$$

- It follows that $A=1$
- From tracelessness, we get $C=B-3$
- To determine Σ and B, we need to turn to the numerical AMW domain wall solution..

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- For the planar AMW domain wall in the x direction, energy-momentum conservation implies that

$$
T_{x x}=\text { const } \quad \Longrightarrow \quad T_{x x}^{\Sigma}=0
$$

- It follows that $A=1$
- From tracelessness, we get $C=B-3$
- To determine Σ and B, we need to turn to the numerical AMW domain wall solution..

$$
T_{\mu \nu}^{\Sigma}=\Sigma\left(-\eta_{\mu \nu}+A v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}-C n_{\mu} n_{\nu}\right)
$$

- For the planar AMW domain wall in the x direction, energy-momentum conservation implies that

$$
T_{x x}=\text { const } \quad \Longrightarrow \quad T_{x x}^{\Sigma}=0
$$

- It follows that $A=1$
- From tracelessness, we get $C=B-3$
- To determine Σ and B, we need to turn to the numerical AMW domain wall solution...

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- \sum can be obtained by comparing with $T_{x x}-T_{y y}$

$$
\Sigma=c \cdot \frac{\gamma^{\prime 2}}{\gamma(1-\gamma)}
$$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$ It turns out that

$$
B=1+\gamma
$$

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- Σ can be obtained by comparing with $T_{x x}-T_{y y}$
- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$ It turns out that

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- Σ can be obtained by comparing with $T_{x x}-T_{y y}$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. Tt It turns out that

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- Σ can be obtained by comparing with $T_{x x}-T_{y y}$

$$
\Sigma=c \cdot \frac{\gamma^{\prime 2}}{\gamma(1-\gamma)}
$$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$ It turns out that

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- \sum can be obtained by comparing with $T_{x x}-T_{y y}$

$$
\Sigma=c \cdot \frac{\gamma^{\prime 2}}{\gamma(1-\gamma)}
$$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$ It turns out that

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- Σ can be obtained by comparing with $T_{x x}-T_{y y}$

$$
\Sigma=c \cdot \frac{\gamma^{\prime 2}}{\gamma(1-\gamma)}
$$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$

$$
T_{\mu \nu}^{\sum}=\Sigma\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-B u_{\mu} u_{\nu}+(3-B) n_{\mu} n_{\nu}\right)
$$

- Σ can be obtained by comparing with $T_{x x}-T_{y y}$

$$
\Sigma=c \cdot \frac{\gamma^{\prime 2}}{\gamma(1-\gamma)}
$$

- The integral of Σ is the domain wall surface tension
- Subsequently B can be obtained from any other component e.g. $T_{t t}$ It turns out that

$$
B=1+\gamma
$$

The AMW domain wall energy-momentum tensor, written in a covariant way is fitted very well by

$$
\underbrace{\gamma \boldsymbol{T}_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}}_{T_{\mu \nu}^{\text {mix }}}+\underbrace{\frac{c \gamma^{\prime 2}}{\gamma(1-\gamma)}\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-(1+\gamma) u_{\mu} u_{\nu}+(2-\gamma) n_{\mu} n_{\nu}\right)}_{T_{\mu \nu}^{\mathcal{L}}}
$$

with

Questions:

1. What are the equations of motion for ?
2. Can we write an action for γ so that $T_{\mu \nu}^{\sum}$ will arise as the corresponding energy-momentum tensor?

The AMW domain wall energy-momentum tensor, written in a covariant way is fitted very well by

$$
\underbrace{\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}}_{T_{\mu \nu}^{\text {mix }}}+\underbrace{\frac{c \gamma^{\prime 2}}{\gamma(1-\gamma)}\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-(1+\gamma) u_{\mu} u_{\nu}+(2-\gamma) n_{\mu} n_{\nu}\right)}_{T_{\mu \nu}^{\Sigma}}
$$

with

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

Questions:

1. What are the equations of motion for ?
2. Can we write an action for γ so that $T_{\mu \nu}^{\sum}$ will arise as the corresponding energy-momentum tensor?

The AMW domain wall energy-momentum tensor, written in a covariant way is fitted very well by

$$
\underbrace{\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}}_{T_{\mu \nu}^{\text {mix }}}+\underbrace{\frac{c \gamma^{\prime 2}}{\gamma(1-\gamma)}\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-(1+\gamma) u_{\mu} u_{\nu}+(2-\gamma) n_{\mu} n_{\nu}\right)}_{T_{\mu \nu}^{\infty}}
$$

with

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

Questions:

1. What are the equations of motion for γ ?
2. Can we write an action for γ so that $T_{\mu \nu}^{\sum}$ will arise as the corresponding energy-momentum tensor?

The AMW domain wall energy-momentum tensor, written in a covariant way is fitted very well by

$$
\underbrace{\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}}_{T_{\mu \nu}^{\text {mix }}}+\underbrace{\frac{c \gamma^{\prime 2}}{\gamma(1-\gamma)}\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-(1+\gamma) u_{\mu} u_{\nu}+(2-\gamma) n_{\mu} n_{\nu}\right)}_{T_{\mu \nu}^{\infty}}
$$

with

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

Questions:

1. What are the equations of motion for γ ?
2. Can we write an action for γ so that $T_{\mu \nu}^{\sum}$ will arise as the corresponding energy-momentum tensor?

The AMW domain wall energy-momentum tensor, written in a covariant way is fitted very well by

$$
\underbrace{\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}}_{T_{\mu \nu}^{\text {mix }}}+\underbrace{\frac{c \gamma^{\prime 2}}{\gamma(1-\gamma)}\left(-\eta_{\mu \nu}+v_{\mu} v_{\nu}-(1+\gamma) u_{\mu} u_{\nu}+(2-\gamma) n_{\mu} n_{\nu}\right)}_{T_{\mu \nu}^{\Sigma}}
$$

with

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

Questions:

1. What are the equations of motion for γ ?
2. Can we write an action for γ so that $T_{\mu \nu}^{\sum}$ will arise as the corresponding energy-momentum tensor?

Equations for tanh

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

follows from

$$
\gamma^{\prime}=\sqrt{2 V(\gamma)} \quad \text { with } \quad V(\gamma)=\frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}
$$

- This is a solution of the equations of motion for an action

$$
\mathcal{L}_{\gamma}=-a(\gamma)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma)\right)
$$

with any prefactor $a(\gamma)$

- We are not done yet, as we do not have any coupling to the hydrodynamic degrees of freedom, so we cannot reproduce the $u^{\mu} u^{\nu}$ terms in $T_{\mu \nu}^{\Sigma}$

Equations for tanh

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

follows from

$$
\gamma^{\prime}=\sqrt{2 V(\gamma)} \quad \text { with } \quad V(\gamma)=\frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}
$$

- This is a solution of the equations of motion for an action

$$
\mathcal{L}_{\gamma}=-a(\gamma)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma)\right)
$$

with any prefactor $a(\gamma)$

- We are not done yet, as we do not have any coupling to the hydrodynamic degrees of freedom, so we cannot reproduce the $u^{\mu} u^{\nu}$ terms in $T_{\mu \nu}^{\Sigma}$

Equations for tanh

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

follows from

$$
\gamma^{\prime}=\sqrt{2 V(\gamma)} \quad \text { with } \quad V(\gamma)=\frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}
$$

- This is a solution of the equations of motion for an action

with any prefactor $a(\gamma)$
- We are not done yet, as we do not have any coupling to the hydrodynamic degrees of freedom, so we cannot reproduce the $u^{\mu} u^{\nu}$ terms in $T_{\mu \nu} \sum_{\nu}$

Equations for tanh

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

follows from

$$
\gamma^{\prime}=\sqrt{2 V(\gamma)} \quad \text { with } \quad V(\gamma)=\frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}
$$

- This is a solution of the equations of motion for an action

$$
\mathcal{L}_{\gamma}=-a(\gamma)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma)\right)
$$

with any prefactor $a(\gamma)$

- We are not done yet, as we do not have any coupling to the
hydrodynamic degrees of freedom, so we cannot reproduce the $u^{\mu} u^{\nu}$ terms in $T_{\mu \nu}^{\Sigma}$

Equations for tanh

$$
\gamma(x)=\frac{1}{2}\left(1+\tanh \frac{q_{*} x}{2}\right)
$$

follows from

$$
\gamma^{\prime}=\sqrt{2 V(\gamma)} \quad \text { with } \quad V(\gamma)=\frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}
$$

- This is a solution of the equations of motion for an action

$$
\mathcal{L}_{\gamma}=-a(\gamma)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma)\right)
$$

with any prefactor $a(\gamma)$

- We are not done yet, as we do not have any coupling to the hydrodynamic degrees of freedom, so we cannot reproduce the $u^{\mu} u^{\nu}$ terms in $T_{\mu \nu}^{\Sigma}$

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor

$$
T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} U_{\nu}\right)
$$

- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
- In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

$$
T=\frac{1}{\sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}} \quad u^{\mu}=T \beta^{\mu}
$$

- It turns out that the lagrangian

$$
\mathcal{L}_{\text {hydro }}=p(T)
$$

reproduces exactly the hydrodynamic energy-momentum tensor..

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor $T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)$
- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
- In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

- It turns out that the lagrangian
$\mathcal{C}_{\text {hydro }}=p(T)$
reproduces exactly the hydrodynamic energy-momentum tensor.

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor

$$
T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
- In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

- It turns out that the lagrangian

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor

$$
T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
\rightarrow In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

- It turns out that the lagrangian

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor

$$
T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
- In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

$$
T=\frac{1}{\sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}} \quad u^{\mu}=T \beta^{\mu}
$$

- It turns out that the lagrangian

Interlude: An action formulation for hydrodynamics

- Dubovsky, Hui, Nicolis, Son considered an action formulation for hydrodynamics, however it convenient to use a reformulation by Haehl, Loganayagam, and Rangamani which reproduces the holographic Euclidean on-shell action...
- Recall the hydrodynamic energy-momentum tensor

$$
T_{\mu \nu}^{\text {deconf }}=p(T)\left(\eta_{\mu \nu}+4 u_{\mu} u_{\nu}\right)
$$

- The degrees of freedom are T and the flow velocity u^{μ} (normalized as $u^{2}=-1$)
- In the action formulation, one uses instead an unnormalized vector field β^{μ} whose length is related to the temperature

$$
T=\frac{1}{\sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}} \quad u^{\mu}=T \beta^{\mu}
$$

- It turns out that the lagrangian

$$
\mathcal{L}_{\text {hydro }}=p(T)
$$

reproduces exactly the hydrodynamic energy-momentum tensor...

Action formulation

- The linear combination of the confining and deconfined energy-momentum tensors

$$
T_{\mu \nu}^{m i x}=\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}
$$

follows from the Lagrangian

$$
\mathcal{L}=(1-\gamma) p(T)+\gamma
$$

- In order to couple the scalar field action for γ to hydrodynamic degrees of freedom, it is enough to add T dependence (recall $\left.T \equiv 1 / \sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}\right)$

$$
\mathcal{L}_{\gamma}=-a(\gamma, T)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma, T)\right)
$$

- For simplicity we take (around $T \sim T_{c} \equiv 1$)

$$
a^{\prime}(\gamma, T)=T^{\alpha} a(\gamma) \quad V^{\prime}(\gamma, T)=T^{\beta} V(\gamma)
$$

Action formulation

- The linear combination of the confining and deconfined energy-momentum tensors

$$
T_{\mu \nu}^{m i x}=\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}
$$

follows from the Lagrangian

$$
\mathcal{L}=(1-\gamma) p(T)+\gamma
$$

- In order to couple the scalar field action for γ to hydrodynamic degrees of freedom, it is enough to add T dependence (recall $T \equiv 1 / \sqrt{\left.-g_{\mu \nu} \beta^{\mu} \beta^{\nu}\right)}$
- For simplicity we take (around $T \sim T_{c} \equiv 1$)

Action formulation

- The linear combination of the confining and deconfined energy-momentum tensors

$$
T_{\mu \nu}^{m i x}=\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}
$$

follows from the Lagrangian

$$
\mathcal{L}=(1-\gamma) p(T)+\gamma
$$

- In order to couple the scalar field action for γ to hydrodynamic degrees of freedom, it is enough to add T dependence (recall $\left.T \equiv 1 / \sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}\right)$
- For simplicity we take (around $T \sim T_{c} \equiv 1$)

Action formulation

- The linear combination of the confining and deconfined energy-momentum tensors

$$
T_{\mu \nu}^{m i x}=\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}
$$

follows from the Lagrangian

$$
\mathcal{L}=(1-\gamma) p(T)+\gamma
$$

- In order to couple the scalar field action for γ to hydrodynamic degrees of freedom, it is enough to add T dependence (recall $\left.T \equiv 1 / \sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}\right)$

$$
\mathcal{L}_{\gamma}=-a(\gamma, T)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma, T)\right)
$$

- For simplicity we take (around $T \sim T_{c} \equiv 1$)

Action formulation

- The linear combination of the confining and deconfined energy-momentum tensors

$$
T_{\mu \nu}^{\text {mix }}=\gamma T_{\mu \nu}^{\text {conf }}+(1-\gamma) T_{\mu \nu}^{\text {deconf }}
$$

follows from the Lagrangian

$$
\mathcal{L}=(1-\gamma) p(T)+\gamma
$$

- In order to couple the scalar field action for γ to hydrodynamic degrees of freedom, it is enough to add T dependence (recall $\left.T \equiv 1 / \sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}\right)$

$$
\mathcal{L}_{\gamma}=-a(\gamma, T)\left(\frac{1}{2}(\partial \gamma)^{2}+V(\gamma, T)\right)
$$

- For simplicity we take (around $T \sim T_{c} \equiv 1$)

$$
a(\gamma, T)=T^{\alpha} a(\gamma) \quad V(\gamma, T)=T^{\beta} V(\gamma)
$$

Action formulation

$$
\mathcal{L}_{\gamma}=-a(\gamma) T^{\alpha}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} V(\gamma)\right)
$$

leads to the energy momentum tensor (evaluated at $T=T_{c}=1$)

$$
T_{\mu \nu}^{\Sigma}=a(\gamma)\left[\partial_{\mu} \gamma \partial_{\nu} \gamma-\left(\frac{1}{2}(\partial \gamma)^{2}+V\right) g_{\mu \nu}-\left(\alpha(\partial \gamma)^{2}+(\alpha+\beta) V\right) u_{\mu} u_{\nu}\right]
$$

Evaluated on a solution satisfying $\gamma^{\prime}=\sqrt{2 V(\gamma)}$ we get

$$
T_{\mu \nu}^{\Sigma}=a(\gamma)[\underbrace{\partial_{\mu} \gamma \partial_{\nu} \gamma}_{(\partial \gamma)^{2} v_{\mu} v_{\nu}}-(\partial \gamma)^{2} \eta_{\mu \nu}-(\partial \gamma)^{2}\left(\frac{3}{2} \alpha+\frac{1}{2} \beta\right) u_{\mu} u_{\nu}]
$$

With

$$
a(\gamma)=\frac{\text { const }}{\gamma(1-\gamma)} \quad \frac{3}{2} \alpha+\frac{1}{2} \beta=1+\gamma
$$

we reproduce the expression fit to the AMW numerical domain wall solution...

Action formulation

$$
\mathcal{L}_{\gamma}=-a(\gamma) T^{\alpha}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} V(\gamma)\right)
$$

leads to the energy momentum tensor (evaluated at $T=T_{c}=1$)

$$
T_{\mu \nu}^{\sum}=a(\gamma)\left[\partial_{\mu} \gamma \partial_{\nu} \gamma-\left(\frac{1}{2}(\partial \gamma)^{2}+V\right) g_{\mu \nu}-\left(\alpha(\partial \gamma)^{2}+(\alpha+\beta) V\right) u_{\mu} u_{\nu}\right]
$$

Evaluated on a solution satisfying $\gamma^{\prime}=\sqrt{ } 2 V(\gamma)$ we get

With

we reproduce the expression fit to the AMW numerical domain wall solution...

Action formulation

$$
\mathcal{L}_{\gamma}=-a(\gamma) T^{\alpha}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} V(\gamma)\right)
$$

leads to the energy momentum tensor (evaluated at $T=T_{c}=1$)

$$
T_{\mu \nu}^{\sum}=a(\gamma)\left[\partial_{\mu} \gamma \partial_{\nu} \gamma-\left(\frac{1}{2}(\partial \gamma)^{2}+V\right) g_{\mu \nu}-\left(\alpha(\partial \gamma)^{2}+(\alpha+\beta) V\right) u_{\mu} u_{\nu}\right]
$$

Evaluated on a solution satisfying $\gamma^{\prime}=\sqrt{2 V(\gamma)}$ we get

$$
T_{\mu \nu}^{\Sigma}=a(\gamma)[\underbrace{\partial_{\mu} \gamma \partial_{\nu} \gamma}_{(\partial \gamma)^{2} v_{\mu} v_{\nu}}-(\partial \gamma)^{2} \eta_{\mu \nu}-(\partial \gamma)^{2}\left(\frac{3}{2} \alpha+\frac{1}{2} \beta\right) u_{\mu} u_{\nu}]
$$

With

Action formulation

$$
\mathcal{L}_{\gamma}=-a(\gamma) T^{\alpha}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} V(\gamma)\right)
$$

leads to the energy momentum tensor (evaluated at $T=T_{c}=1$)

$$
T_{\mu \nu}^{\sum}=a(\gamma)\left[\partial_{\mu} \gamma \partial_{\nu} \gamma-\left(\frac{1}{2}(\partial \gamma)^{2}+V\right) g_{\mu \nu}-\left(\alpha(\partial \gamma)^{2}+(\alpha+\beta) V\right) u_{\mu} u_{\nu}\right]
$$

Evaluated on a solution satisfying $\gamma^{\prime}=\sqrt{2 V(\gamma)}$ we get

$$
T_{\mu \nu}^{\Sigma}=a(\gamma)[\underbrace{\partial_{\mu} \gamma \partial_{\nu} \gamma}_{(\partial \gamma)^{2} v_{\mu} v_{\nu}}-(\partial \gamma)^{2} \eta_{\mu \nu}-(\partial \gamma)^{2}\left(\frac{3}{2} \alpha+\frac{1}{2} \beta\right) u_{\mu} u_{\nu}]
$$

With

$$
a(\gamma)=\frac{\text { const }}{\gamma(1-\gamma)} \quad \frac{3}{2} \alpha+\frac{1}{2} \beta=1+\gamma
$$

we reproduce the expression fit to the AMW numerical domain wall solution...

Action formulation

We find a very simple description:

leading to the energy momentum tensor


```
- The mixing terms in square brackets lead to an effectively
    asymmetric potential away from \(T=T_{c}\)
    - We believe that the overall structure is very generic and should be
    applicable to numerous other contexts with a \(1^{\text {st }}\) order phase
    transition
```

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {phase A }}+\gamma T_{\mu \nu}^{\text {phase B }}+T_{\mu \nu}^{\Sigma}
$$

Action formulation

We find a very simple description:

$$
\mathcal{L}=[(1-\gamma) p(T)+\gamma]-\frac{c T^{\alpha}}{\gamma(1-\gamma)}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} \frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}\right)
$$

leading to the energy momentum tensor

> - The mixing terms in square brackets lead to an effectively asymmetric potential away from $T=T_{c}$
> - We believe that the overall structure is very generic and should be applicable to numerous other contexts with a $1^{\text {st }}$ order phase transition

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {phase } A}+\gamma T_{\mu \nu}^{p h a s e ~ B}+T_{\mu \nu}^{\Sigma}
$$

Action formulation
We find a very simple description:

$$
\mathcal{L}=[(1-\gamma) p(T)+\gamma]-\frac{c T^{\alpha}}{\gamma(1-\gamma)}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} \frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}\right)
$$

leading to the energy momentum tensor

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {deconf }}+\gamma T_{\mu \nu}^{\text {conf }}+T_{\mu \nu}^{\Sigma}
$$

- The mixing terms in square brackets lead to an effectively asymmetric potential away from $T=T_{c}$
- We believe that the overall structure is very generic and should be applicable to numerous other contexts with a $1^{\text {st }}$ order phase transition

Action formulation
We find a very simple description:

$$
\mathcal{L}=[(1-\gamma) p(T)+\gamma]-\frac{c T^{\alpha}}{\gamma(1-\gamma)}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} \frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}\right)
$$

leading to the energy momentum tensor

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {deconf }}+\gamma T_{\mu \nu}^{\text {conf }}+T_{\mu \nu}^{\Sigma}
$$

- The mixing terms in square brackets lead to an effectively asymmetric potential away from $T=T_{c}$
- We believe that the overall structure is very generic and should be applicable to numerous other contexts with a $1^{\text {st }}$ order phase transition

Action formulation

We find a very simple description:

$$
\mathcal{L}=[(1-\gamma) p(T)+\gamma]-\frac{c T^{\alpha}}{\gamma(1-\gamma)}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} \frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}\right)
$$

leading to the energy momentum tensor

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {deconf }}+\gamma T_{\mu \nu}^{\text {conf }}+T_{\mu \nu}^{\Sigma}
$$

- The mixing terms in square brackets lead to an effectively asymmetric potential away from $T=T_{c}$
- We believe that the overall structure is very generic and should be applicable to numerous other contexts with a $1^{\text {st }}$ order phase transition

Action formulation

We find a very simple description:

$$
\mathcal{L}=[(1-\gamma) p(T)+\gamma]-\frac{c T^{\alpha}}{\gamma(1-\gamma)}\left(\frac{1}{2}(\partial \gamma)^{2}+T^{\beta} \frac{q_{*}^{2}}{2} \gamma^{2}(1-\gamma)^{2}\right)
$$

leading to the energy momentum tensor

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {deconf }}+\gamma T_{\mu \nu}^{\text {conf }}+T_{\mu \nu}^{\Sigma}
$$

- The mixing terms in square brackets lead to an effectively asymmetric potential away from $T=T_{c}$
- We believe that the overall structure is very generic and should be applicable to numerous other contexts with a $1^{\text {st }}$ order phase transition

$$
T_{\mu \nu}=(1-\gamma) T_{\mu \nu}^{\text {phase A }}+\gamma T_{\mu \nu}^{\text {phase } B}+T_{\mu \nu}^{\Sigma}
$$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase
(c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface...
$\Omega_{\text {before }}=-P\left(V+V_{\text {droplet }}\right) \quad \Omega_{\text {after }}=-P V-P_{\text {droplet }} V_{\text {droplet }}+\Sigma A$
then

$$
\text { probability } \propto e^{-\frac{1}{T}\left(\Omega_{\text {after }}-\Omega_{\text {before }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\Sigma A\right)}
$$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase (c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface..

then
probability $\propto e^{-\frac{1}{T}\left(\Omega_{\text {ater }}-\Omega_{\text {beforere }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\Sigma A\right)}$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase
(c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface...

then
probability $\propto e^{-\frac{1}{T}\left(\Omega_{\text {after }}-\Omega_{\text {before }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\sum A\right)}$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase
(c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface...
$\Omega_{\text {before }}=-P\left(V+V_{\text {droplet }}\right) \quad \Omega_{\text {after }}=-P V-P_{\text {droplet }} V_{\text {droplet }}+\Sigma A$
then
probability $\propto e^{-\frac{1}{T}\left(\Omega_{\text {ater }}-\Omega_{\text {beforre }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\Sigma A\right)}$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase
(c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface...
$\Omega_{\text {before }}=-P\left(V+V_{\text {droplet }}\right) \quad \Omega_{\text {after }}=-P V-P_{\text {droplet }} V_{\text {droplet }}+\Sigma A$
then

$$
\text { probability } \propto e^{-\frac{1}{T}\left(\Omega_{\text {ater }}-\Omega_{\text {beforre }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\Sigma A\right)}
$$

Thermodynamic nucleation probability

- From equilibrium thermodynamics one can compute the probability of nucleation of a bubble of a different phase
(c.f. Landau, Statistical Physics)
- The probability is given by a difference of thermodynamic potentials, which include a contribution of the surface tension of the interface...
$\Omega_{\text {before }}=-P\left(V+V_{\text {droplet }}\right) \quad \Omega_{\text {after }}=-P V-P_{\text {droplet }} V_{\text {droplet }}+\Sigma A$
then

$$
\text { probability } \propto e^{-\frac{1}{T}\left(\Omega_{\text {ater }}-\Omega_{\text {beforre }}\right)}=e^{-\frac{1}{T}\left(-\left(P_{\text {droplet }}-P\right) V_{\text {droplet }}+\Sigma A\right)}
$$

How to reproduce this in our framework?

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT.
- This was generalized by Linde '81 to the finite temperature case
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
\Rightarrow The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

$$
\mathcal{L}_{E}(x)=-P(x)+\Sigma(x)
$$

- In the thin wall approximation we reproduce Landau's result e.g.

$$
S_{\text {after }}^{\text {on-sll }}=\int \mathcal{L}_{E}(x) d \tau d^{2} x d \phi=-\frac{1}{T}\left(P V+P_{\text {droplet }} V_{\text {droplet }}-\Sigma A\right)
$$

[^0]
Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
* The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

- In the thin wall approximation we reproduce Landau's result e.g.

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde '81 to the finite temperature case
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
* The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

- In the thin wall approximation we reproduce Landau's result e.g.

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde ' 81 to the finite temperature case

a)

b)

c)

d)
- In case d) we need the Euclidean action of a static bubble with thermal periodicity

- In the thin wall approximation we reproduce Landau's result e.g.

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde ' 81 to the finite temperature case

a)

b)

c)

d)
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
- The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

- In the thin wall approximation we reproduce Landau's result e.g.

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde ' 81 to the finite temperature case

a)

b)

c)

d)
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
- The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

$$
\mathcal{L}_{E}(x)=-P(x)+\Sigma(x)
$$

- In the thin wall approximation we reproduce Landau's result e.g.

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde ' 81 to the finite temperature case

a)

b)

c)

d)
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
- The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

$$
\mathcal{L}_{E}(x)=-P(x)+\Sigma(x)
$$

- In the thin wall approximation we reproduce Landau's result e.g.

$$
S_{\text {after }}^{o n-\text { shell }}=\int \mathcal{L}_{E}(x) d \tau d^{2} x d \phi=-\frac{1}{T}\left(P V+P_{\text {droplet }} V_{\text {droplet }}-\Sigma A\right)
$$

Thermodynamic nucleation probability

- Coleman introduced an Euclidean picture of tunneling as instanton/bounce solutions in QFT...
- This was generalized by Linde ' 81 to the finite temperature case

a)

b)

c)

d)
- In case d) we need the Euclidean action of a static bubble with thermal periodicity
- The action density can be read off from the coefficient of $\eta_{\mu \nu}$ in $T_{\mu \nu}$

$$
\mathcal{L}_{E}(x)=-P(x)+\Sigma(x)
$$

- In the thin wall approximation we reproduce Landau's result e.g.

$$
S_{\text {after }}^{\text {on-shell }}=\int \mathcal{L}_{E}(x) d \tau d^{2} x d \phi=-\frac{1}{T}\left(P V+P_{\text {droplet }} V_{\text {droplet }}-\Sigma A\right)
$$

see also Bigazzi, Caddeo, Cotrone, Paredes for a gravitational perspȩ̧łivsı

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field
coupled to
hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

Conclusions

- The structure of domain walls is much simpler than one could expect from the complicated numerical gravitational backgrounds
- This suggests that one could model them directly on the level of the boundary field theory energy-momentum tensor
- The incorporation of confining phases necessitates the introduction of an additional degree of freedom γ
- We proposed a structure of the energy-momentum tensor describing domains of both phases separated by domain walls
- We proposed an action for the scalar field γ coupled to hydrodynamic degrees of freedom
- The tanh profiles are obtained analytically from this model
- One needs more holographic solutions for going away from $T=T_{c}$ and taking into accounts effects of flow (terms like $u^{\mu} \partial_{\mu} \gamma$)
- We believe that the overall framework is applicable in a very general context of coexisting phases and domain walls - even outside holography...

[^0]: see also Bigazzi,

