Strong field QED

Experiment

Pair production

Lightfront field theory and intense laser physics

Anton Ilderton

LightCone seminar series

LEVERHULME TRUST

PRD 92 (2015) 025009, PRL 118 (2017) 11, PRX 7 (2017) 041003, PLB 782 (2018) 22, PRX 8 (2018) 011020, PRD 102 (2020) 076013, JHEP 09 (2020) 200

Strong field QED	Experiment O	Pair production	Gravity 00
Outline			

- 1. Overview: lightfront field theory & intense lasers.
- Non-perturbative pair production
 & lightfront zero modes.
- (3. Yang-Mills and Gravity.)

Strong field QED	Experiment	Pair production	Gravity
●000000	0		00
	C' 1 1		

• Laser-electron.

- Laser parameters: Energy $\omega \sim 1 \mbox{ eV}$ Duration $\sim 10^{-15} \mbox{ s}$ Spot size $\sim \mu m^2$
- $\bullet~{\rm Intensity} \sim 10^{22}~{\rm W/cm^2}:$ huge photon flux.

Strong field QED	Experiment	Pair production	Gravity
●0000000	O		00
	C 1 1		

• Laser-electron.

- Laser parameters: Energy $\omega \sim 1 \mbox{ eV}$ Duration $\sim 10^{-15} \mbox{ s}$ Spot size $\sim \mu m^2$
- $\bullet~{\rm Intensity}~\sim 10^{22}~{\rm W/cm^2}:$ huge photon flux.

Intensity^{1/2}:
$$a_0 = \frac{eE}{m\omega}$$
. Today: $a_0 \gg 1$.

Strong field QED	Experiment	Pair production	Gravity
●0000000	O		00
	C 1 1		

• Laser-electron.

- Laser parameters: Energy $\omega \sim 1$ eV Duration $\sim 10^{-15}$ s Spot size $\sim \mu m^2$
- $\bullet~{\rm Intensity}~\sim 10^{22}~{\rm W/cm^2}:$ huge photon flux.

Intensity^{1/2}:
$$a_0 = \frac{eE}{m\omega}$$
. Today: $a_0 \gg 1$.

! Work done: $a_0 = eE\lambda/m \gg 1 \implies$ relativistic physics.

Strong field QED	Experiment	Pair production	Gravity
●0000000	O		00
	C 1 1		

• Laser-electron.

- Laser parameters: Energy $\omega \sim 1$ eV Duration $\sim 10^{-15}$ s Spot size $\sim \mu m^2$
- $\bullet~{\rm Intensity}~\sim 10^{22}~{\rm W/cm^2}:$ huge photon flux.

Intensity^{1/2}:
$$a_0 = \frac{eE}{m\omega}$$
. Today: $a_0 \gg 1$.

- ! Work done: $a_0 = eE\lambda/m \gg 1 \implies$ relativistic physics.
- ! Multiphoton: $a_0 = eE\lambda_C/\omega \gg 1 \implies$ nonlinear physics.

Strong field QED	Experiment O	Pair production	Gravity 00
1	0.000		

• Laser-electron.

- Laser parameters: Energy $\omega \sim 1$ eV Duration $\sim 10^{-15}$ s Spot size $\sim \mu m^2$
- Intensity $\sim 10^{22} \ {\rm W/cm^2}:$ huge photon flux.

Intensity^{1/2}:
$$a_0 = \frac{eE}{m\omega}$$
. Today: $a_0 \gg 1$.

- ! Work done: $a_0 = eE\lambda/m \gg 1 \implies$ relativistic physics.
- ! Multiphoton: $a_0 = eE\lambda_C/\omega \gg 1 \implies$ nonlinear physics.
- $a_0 =$ coupling to laser \implies non-perturbative physics.

Strong field QED	Experiment	Pair production	Gravity
0●00000	O		00
Strong-field OED			

• QED + background field A_{bg} describing laser:

$$\mathcal{L} = \bar{\psi} (i\vec{\vartheta} - m)\psi - e\bar{\psi}A\psi - e\bar{\psi}A_{bg}\psi = \bar{\psi} [i\vec{\vartheta} - eA_{bg} - m]\psi - e\bar{\psi}A\psi$$

• Calculate amplitudes in Furry expansion. Furry PR 81 (1951) 115 (background field perturbation theory).

- Coupling $a_0 \sim eA_{bg}$: treated exactly.
- QED coupling α : perturbation theory.
- Double line: all-orders interaction with background.

Strong field QED	Experiment	Pair production	Gravity
00●0000	O		00
Laser-particle collisi	ons		

• Emission of radiation

- Pair production
- Cascades

- Radiation & back-reaction in laser-particle collisions.
- At $a_0 \sim 10$
- Simultaneous measurement of e^- & γ .
- Consistent with quantum models.
- Radiation reaction.

Cole et al, PRX 8 (2018) 011020

Strong field QED	Experiment O	Pair production	Gravity 00
laser \rightarrow plane wa	We		

• Plane waves in QED, YM and gravity.

- 'Lightfront time' $n \cdot x = x^+ \equiv t + z$
- Univariate: $A_{\mu} \equiv A_{\mu}(n \cdot x)$
- Transverse: $n \cdot A = 0$.
- Captures laser strength a_0 , frequency & temporal profile.
- Laser: a coherent state of zero modes, $p^+ = 0!$
- Beyond plane waves: hot topic.

Heinzl, AI, Seipt PRD 98 (2018) 016002

Heinzl, <u>AI</u> PRL 118 (2017) 11

Hu, AI, Zhao PRD 102 (2020) 016017

Strong field QED	Experiment	Pair production	Gravity
00000€0	0		00
Laser-laser collision	S		

• Collide: intense optical laser & x-ray 'probe'.

• Probe polarisation: linear \longrightarrow elliptic. Heinzl et al Opt.Comm. 267 (2006)

Strong field QED	Experiment	Pair production	Gravity
00000€0	0		00
Laser-laser collision	S		

• Collide: intense optical laser & x-ray 'probe'.

- Probe polarisation: linear → elliptic. Heinzl et al Opt.Comm. 267 (2006)
- The quantum vacuum, exposed to intense light, is birefringent. Toll, PhD thesis, 1952

Strong field QED	Experiment	Pair production	Gravity
000000●	O		00
(Vacuum) birefringe	ence		

• 'Vacuum' refractive indices:

- $a_0 = 0.5, 1, \dots 8$ $b_0 = k_{probe}^+ \omega_{laser} / m^2$
- Peaks: resonances at threshold lightfront momentum for pairs.
- Flagship experiment HIBEF @ EU-XFEL.

Schlengvoit, Heinzl, et al Phys.Scr. 91 (2016) 023010

Strong field QED	Experiment •	Pair production	Gravity 00
Experiment			

LUXE experiment @DESY arXiv: 2102.02032 [hep-ex]

Strong field QED	Experiment	Pair production	Gravity

Part 2

Strong field QED	Experiment	Pair production	Gravity
	0	●00000	00
Non-perturbative pa	air production		

• A sufficiently strong electric field E can collapse into pairs:

$$\frac{\mathbb{P}}{VT} \sim (eE)^2 \exp\left[-\pi \frac{m^2}{eE}\right]$$

• Non-perturbative effect.

Sauter, Schwinger

• Exponential supression below $E_S := m^2/e$ Would require multiple laser pulses.

Bulanov et al PRL 104 (2010) 220404, Gonoskov et al PRL 111 (2013) 060404

- ! Assumes a constant & homogeneous field.
- ? How to go beyond constant fields?

Strong field QED	Experiment	Pair production	Gravity
	0	0●0000	00
Schwinger effect in	non-constant field	ds	

• Locally Constant Field Approximation?

$$\mathbb{P}_{\mathsf{pairs}} \sim VTE^2 \exp\left[-rac{\pi E_S}{E}
ight]$$

Strong field QED	Experiment	Pair production	Gravity
	0	0●0000	00
Schwinger effect in	non-constant field	ds	

• Locally Constant Field Approximation?

$$\mathbb{P}_{\mathsf{pairs}} \sim VTE^2 \exp\left[-\frac{\pi E_S}{E}\right] \xrightarrow{?} \int \mathrm{d}^4 x \, E^2(x) \exp\left[-\frac{\pi E_S}{E(x)}\right]$$

Q. When does this work?

Strong field QED	Experiment	Pair production	Gravity
	0	o●oooo	00
Schwinger effect in	non-constant field	ds	

• Locally Constant Field Approximation?

$$\mathbb{P}_{\text{pairs}} \sim VTE^2 \exp\left[-\frac{\pi E_S}{E}\right] \xrightarrow{?} \int d^4x \, E^2(x) \exp\left[-\frac{\pi E_S}{E(x)}\right]$$

Q. When does this work?

A2. Not exact in general.

A1. Often a good approximation. Schneider et al PRD 98 (2018)

Nikishov NPB 21 (1970) Narozhnyi & Nikishov Sov.J.Nucl.Phys. 11 (1970) Dunne et al PRD73 (2006)

A3. Only exact for $E = E_z(x^+) \dots$ why?

Tomaras et al PRD 62 (2000)

Strong field QED	Experiment	Pair production	Gravity
	O	00●000	00
The effective activ	h		

• Probability of pair production:

$$\mathbb{P}_{\text{pairs}} = 1 - e^{-2\text{Im }\Gamma} \simeq 2\text{Im }\Gamma$$

• One-loop worldline representation¹:

•
$$\Gamma = \int_{0}^{\infty} \frac{\mathrm{d}T}{T} \oint_{\mathrm{loops}} \mathcal{D}^{4}x \ e^{-iS}$$

- S: classical particle action, $x^{\mu}(\tau)$ in background $F_{\mu\nu}(x)$.
- Our background: $E_z(x^+)$

¹Feynman PR 80 (1950) 440, Schwinger PR 82 (1951) 664, Affleck et al., NPB 197 (1982) 509, Bern & Kosower NPB 379 (1992) 451, Strassler NPB 385 (1992) 145, Schubert APPB 27 (1996) 3965

Strong field QED	Experiment	Pair production	Gravity
	0	000●00	00
Localisation			

- Vacuum trivial up to lightfront zero modes: $p^+ = 0$.
- Start evaluating path integrals. Perp components straightforward.

$$\oint \mathcal{D}x^+ \mathcal{D}x^- e^{iS} = \oint \mathcal{D}x^+ \,\delta[\dot{x}^+(\tau)] \cdots = \int dx^+ \cdots$$

Strong field QED	Experiment	Pair production	Gravity
	0	000●00	00
Localisation			

- Vacuum trivial up to lightfront zero modes: $p^+ = 0$.
- Start evaluating path integrals. Perp components straightforward.

$$\oint \mathcal{D}x^+ \mathcal{D}x^- e^{iS} = \oint \mathcal{D}x^+ \,\delta[\dot{x}^+(\tau)] \cdots = \int dx^+ \cdots$$

•
$$p^+ \leftrightarrow m\dot{x}^+!$$

- Only zero modes contribute.
- \rightarrow localisation.
 - ... why this simplicity?

Semiclassical	approvimation		
Strong field QED	Experiment	Pair production	Gravity
	0	0000●0	00

• Semiclassical approx:
$$\Gamma \sim \exp\left[-iS(x_{\rm cl})\right]$$

$$m\ddot{x}^{\mu}_{cl} = eF^{\mu}{}_{\nu}(x_{cl})\dot{x}^{\nu}_{cl}$$

• Classical periodic path: Instanton. Complex-valued.²

² Lavrelashvili et al NPB 329 (1990), Kim & Page PRD 75 (2007), Bender et al PRL 104 (2010), Dumlu & Dunne PRD 84 (2011), <u>Al</u> Torgrimsson Wårdh PRD 92 (2015)

Somiclassical	approximation		
0000000	0 O		00
CHARLE CED		Dela successione	Constitution

• Semiclassical approx:
$$\Gamma \sim \exp\left[-iS(x_{cl})\right]$$

$$m\ddot{x}^{\mu}_{\rm cl} = eF^{\mu}{}_{\nu}(x_{\rm cl})\dot{x}^{\nu}_{\rm cl}$$

- Classical periodic path: Instanton. Complex-valued.²
- Interpolating spacetime dependence, $E \equiv E(q)$

$$q = \lambda t + \sqrt{1 - \lambda^2} z , \qquad \lambda = 1 \ \downarrow \ 1/\sqrt{2}$$

² Lavrelashvili et al NPB 329 (1990), Kim & Page PRD 75 (2007), Bender et al PRL 104 (2010), Dumlu & Dunne PRD 84 (2011), <u>Al</u> Torgrimsson Wårdh PRD 92 (2015)

Constalential			
Strong field QED	Experiment	Pair production	Gravity
	0	0000●0	00

Semiclassical approximation

• Semiclassical approx:
$$\Gamma \sim \exp\left[-iS(x_{cl})\right]$$

$$m\ddot{x}^{\mu}_{\rm cl} = eF^{\mu}{}_{\nu}(x_{\rm cl})\dot{x}^{\nu}_{\rm cl}$$

- Classical periodic path: Instanton. Complex-valued.²
- Interpolating spacetime dependence, $E \equiv E(q)$

$$q = \lambda \, t + \sqrt{1 - \lambda^2} \, z \;, \qquad \lambda = 1 \; \downarrow \; 1/\sqrt{2}$$

• Example:
$$E \equiv E_0 \operatorname{sech}^2(\omega q)$$

 $-iS(x_{cl}) \sim \oint dq \ \dot{q} \qquad \dot{q}^2 = \lambda + a_0^2 \tanh^2(\omega q)$

• Contour integral over the instanton in the complex plane.

² Lavrelashvili et al NPB 329 (1990), Kim & Page PRD 75 (2007), Bender et al PRL 104 (2010), Dumlu & Dunne PRD 84 (2011), <u>Al</u> Torgrimsson Wårdh PRD 92 (2015)

Strong field QED	Experiment	Pair production	Gravity
	0	00000●	00
Interpolating instan	itons		

$\operatorname{Complex}\,q(\tau)\,\operatorname{plane}$

$$E \equiv E(q) \;, \quad q = t + \mathbf{0}z$$

- Time-dependent.
- Instanton circles a branch.
- Extended / nonlocal.
- Exact results in E(t): not LCFA.

Strong field QED	Experiment	Pair production	Gravity
	O	00000●	00
Interpolating instant	tons		

Complex
$$q(au)$$
 plane

 $\frac{\pi}{2}$

 $-\frac{\pi}{2}$

-1

$$E \equiv E(q), \quad q = 0.9t + 0.4z$$

- Time & space dependent.
- Branch points move closer.
- Extended / nonlocal

Strong field QED	Experiment	Pair production	Gravity
	0	00000●	00
Interpolating instant	tons		

$\operatorname{Complex}\,q(\tau)\,\operatorname{plane}$

$$E \equiv E(q) , \quad q = (t+z)/\sqrt{2}$$

- q: lightfront time.
- Branch cut \rightarrow pole!
- Instantons → points (Cauchy)
 <u>AI</u> Torgrimsson Wårdh PRD 92 (2015) 025009
- Localisation: LCFA exact.
 - AI Torgrimsson Wårdh PRD 92 (2015) 065001

Strong field QED	Experiment 0	Pair production	Gravity ●○
Double copy			

• 'Double copy': colour \rightarrow kinematics.

YM amplitudes
$$M^2 = A$$
 gravity amplitudes

- Beyond vacuum / flat backgrounds?
- \bullet Amplitudes: YM plane waves \rightarrow plane wave spacetimes

$$\begin{aligned} \mathrm{d}s^2 &= \mathrm{d}x^+ \mathrm{d}x^- - \mathrm{d}x^j \mathrm{d}x^j - H_{ij}(x^+)x^i x^j \mathrm{d}x^+ \mathrm{d}x^+ \\ \mathrm{d}A &= -E_j(x^+)x^j \mathrm{d}x^+ \\ i, j &\in \{1, 2\} \end{aligned}$$

• E_j : (colour) electric field. H_{ij} : curvature.

Strong field QED	Experiment 0	Pair production	Gravity ○●
Double copy of class	sical & quantum	radiation	

• Classical colour radiation in YM.

Goldberger & Ridgway, PRD 95 (2017) 125010, Luna et al, JHEP 04 (2017) 069

• Generalise classical double copy to background fields.

Adamo & AI, JHEP 09 (2020) 200

• Consistency with quantum double copy.

Strong field QED	Experiment	Pair production	Gravity
0000000	0	000000	○●
Double copy of class	sical & quantum	radiation	

• Classical colour radiation in YM.

Goldberger & Ridgway, PRD 95 (2017) 125010, Luna et al, JHEP 04 (2017) 069

• Generalise classical double copy to background fields.

Adamo & AI, JHEP 09 (2020) 200

- Consistency with quantum double copy.
- Double copy of focussed laser backgrounds gravitational waves.

AI, PLB 782 (2018) 22

Strong field QED	Experiment 0	Pair production	Gravity 00
Conclusions			

- Lightfront field theory essential for laser-matter interactions.
- Zero mode physics: non-perturbative pair production. Other topics:
 - Numerical approaches.... tBLFQ Vary, Zhao, many others!...
 - Strong-field physics in heavy-ion collisions, QGP, astro...
 - Ritus-Narozhny conjecture.

Review: Fedotov, J.Phys.Conf.Ser. 826 (2017) 012027