Light-front wavefunctions, covariant Bethe–Salpeter amplitudes, and meson elastic and transition form factors

Pieter Maris

Dept. of Physics and Astronomy lowa State University Ames, IA 50011

LC seminar series, Dec. 9, 2020, online

Outline

Introduction

- **Basis Light-Front Quantization**
- Electromagnetic form factors on the Light-Front
- Transition form factors on the Light-Front
- **Dyson–Schwinger Equations**
- Mesons as bound states of dressed quarks
- Meson form factors
- From BSAs to LFWFs
- Concluding remarks
- For further reading
- Fock-space expansion

Hadron Physics

Where do hadrons get there mass from if the quark masses are only a few MeV?

PDG: at scale $\mu = 2 \text{ GeV}$ 2 MeV < $m_{u,d} < 8 \text{ MeV}$

Why are pions so much lighter than all other hadrons ?

α +		Delt	ta ↑†↑ ton ↑↓↑	1.23 GeV 0.94 GeV
140 MeV	770 MeV	rho	$\uparrow\uparrow$	0.77 GeV
vperfine	splitting??	pi	$\uparrow\downarrow$	0.14 GeV

P. Maris (ISU)

LF wfns, BSAs, and form factors

Introduction

P. Maris (ISU)

e

Introduction

Quantum Chromo Dynamics

Relativistic Quantum Field Theory

$$\mathcal{L}(\psi, \bar{\psi}, A) = \bar{\psi} \Big(i \gamma^{\mu} \big(\partial_{\mu} + i g \frac{\lambda}{2} A_{\mu} \big) - m \Big) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \text{ gauge fixing}$$

- Dynamical chiral symmetry breaking
- Quarks and gluons are confined
 - they have never been observed in isolation
 - only colorless bound states of quarks and gluons are observed

mesons

baryons

Need nonperturbative methods

P. Maris (ISU)

Nonperturbative methods

- Light-Front QCD
- AdS/QCD holography
- Lattice QCD
- Dyson–Schwinger Equations
- QCD sum rules
- Chiral Effective Field Theory
- Heavy-quark EFT (nonrelativistic)

Introduction

Light-Front QCD vs Dyson–Schwinger Equations

- Based on Minkowsky formulation
- LF QCD Hamiltonian
 - LF wfns eigenstates of Ĥ
 - only few-body interactions
- Form factors
 - obtained from LF wfn
- Fock space truncation
- Advantages
 - direct access to LF wfn
- Challenges
 - chiral symmetry breaking
 - restoring rotational symmetry
 - higher Fock spaces

- Based on QCD Lagrangian in Euclidean formulation
- Hadrons: poles in *n*-point fns
 - Bethe–Salpeter eqn
- Form factors
 - obtained from BSAs
- Rainbow-Ladder truncation
- Advantages
 - explicitly covariant
 - chiral symmetry breaking
- Challenges
 - obtaining LF wfn
 - beyond RL truncation

Open question: Manifestation of Confinement ?

Light-Front Holography and Confinement

- Holographic variable $\vec{\zeta}_{\perp} = \sqrt{x(1-x)} \vec{r}_{\perp}$
- Effective confining interaction in transverse direction

$$V_{\perp \text{ conf}} = \kappa^4 \zeta_{\perp}^2 = \kappa^4 x(1-x) r_{\perp}^2$$

Brodsky, de Teramond, Dosch, Erlich, Phys. Rept. 584, 1 (2015)

Effective longitudinal confinement

$$V_{x \text{ conf}} = -\frac{\kappa^4}{m_q + m_{\bar{q}}} \partial_x \left[x(1-x) \partial_x \right]$$

Yang Li, Maris, Zhao, Vary, PLB758, 118 (2016)

< ロ > < 同 > < 回 > < 回 >

- combines, in nonrelativistic limit, with transverse confinement into 3-D harmonic oscillator confinement
- distribution amplitudes match pQCD asymptotics
- exactly solvable

Basis Light-Front Quantization

- ► Effective Hamiltonian $H_{\text{eff}} = \frac{\vec{k}_{\perp}^{2} + m_{q}^{2}}{x} + \frac{\vec{k}_{\perp}^{2} + m_{\bar{q}}^{2}}{1 - x} + \frac{\kappa^{4} \vec{\zeta}_{\perp}^{2}}{(m_{q} + m_{\bar{q}})^{2}} \frac{\kappa^{4}}{(m_{q} + m_{\bar{q}})^{2}} \partial_{x} (x(1 - x)\partial_{x}) + \frac{V_{g}}{(m_{q} + m_{\bar{q}})^{2}} \frac{\sigma_{q}}{\sigma_{q}} + \frac{\kappa^{4} \vec{\zeta}_{\perp}^{2}}{(m_{q} + m_{\bar{q}})^{2}} \frac{\kappa^{4}}{(m_{q} + m_{\bar{q}})^{2}} \frac{\sigma_{q}}{\sigma_{q}} + \frac{V_{g}}{\sigma_{q}} \frac{\sigma_{q}}{\sigma_{q}} \frac$
- Basis representation: Eigenfunctions of LF kinetic energy, transverse confinement and longitudinal confinement

$$\psi(\mathbf{x}, \mathbf{k}_{\perp}) = \sum_{n,m,l} c_{nmlss'} \phi_{nm} \left(\mathbf{k}_{\perp} / \sqrt{\mathbf{x}(1-\mathbf{x})} \right) \chi_l(\mathbf{x})$$

- transverse direction: 2-D harmonic oscillator functions
- ► longitudinal direction: Jacobi polynomials weighted by $x^{\alpha}(1-x)^{\beta}$
- One-gluon exchange with running coupling

$$V_g = -\frac{4}{3} \times \frac{4\pi\alpha_s(Q^2)}{Q^2} \bar{u}_{\sigma'} \gamma^{\mu} u_{\sigma} \bar{v}_s \gamma_{\mu} v_{s'}$$

Quarkonium Spectroscopy

Yang Li, Maris, Vary, PRD96, 016022 (2017)

fitted value for κ follows expected trajectory $\kappa_h \propto \sqrt{M_h}$

P. Maris (ISU)

LF Wave Functions

available at Yang Li (2019), Mendeley Data, v2; DOI: 10.17632/cjs4ykv8cv.2

▶ Pseudoscalar mesons: two spin structures, $\psi(x, k_{\perp})_{(\uparrow\downarrow - \downarrow\uparrow)}$ and $\psi(x, k_{\perp})_{\downarrow\downarrow} = \psi(x, k_{\perp})^*_{\uparrow\uparrow}$

- Vector mesons: 6 different Dirac structures
- Heavy quarkonia: non-relativistic configurations dominate
- Radial excitations more spread out in coordinate space

BLFQ

Charge and Gravitational radii

Scalar and pseudoscalar states

$$\langle r_{\rm c}^2 \rangle = \frac{3}{2} \langle \vec{b}_{\perp}^2 \rangle \equiv \frac{3}{2} \sum_{s,\bar{s}} \int_0^1 \frac{dx}{4\pi} \int d^2 r_{\perp} (1-x)^2 \vec{r}_{\perp}^2 \, \tilde{\psi}_{s\bar{s}}^*(\vec{r}_{\perp},x) \tilde{\psi}_{s\bar{s}}(\vec{r}_{\perp},x)$$

$$\langle r_{\rm m}^2 \rangle = \frac{3}{2} \langle \vec{\zeta}_{\perp}^2 \rangle \equiv \frac{3}{2} \sum_{s,\bar{s}} \int_0^1 \frac{dx}{4\pi} \int d^2 r_{\perp} \, x(1-x) \, \vec{r}_{\perp}^2 \, \tilde{\psi}_{s\bar{s}}^*(\vec{r}_{\perp},x) \tilde{\psi}_{s\bar{s}}(\vec{r}_{\perp},x)$$

'Charge' radii: couple photon to quark, but not to anti-quark

- 'Charge' radii slightly larger than mass radii for charmonia, but nearly equal for bottomonia
 - splitting is relativistic effect

Electromagnetic form factors on the Light-Front

Consider (pseudo)scalar elastic form factor F on the light-front

- Longitudinal or transverse components related by kinematic boost $\langle \psi_h(p'^+, \vec{p}'_\perp + p'^+ \vec{\beta}_\perp; \omega) | \vec{J}_\perp | \psi_h(p^+, \vec{p}_\perp + p^+ \vec{\beta}_\perp; \omega) \rangle =$
 - $= \langle \psi_h(\boldsymbol{p}^{\prime +}, \vec{\boldsymbol{p}}_{\perp}^{\prime}; \omega) | \vec{J}_{\perp} | \psi_h(\boldsymbol{p}^+, \vec{\boldsymbol{p}}_{\perp}; \omega) \rangle + \vec{\beta}_{\perp} \langle \psi_h(\boldsymbol{p}^{\prime +}, \vec{\boldsymbol{p}}_{\perp}^{\prime}; \omega) | J^+ | \psi_h(\boldsymbol{p}^+, \vec{\boldsymbol{p}}_{\perp}; \omega) \rangle$
- Evaluated from either transverse or longitudinal component $\langle \psi_b(p') | J^+(0) | \psi_b(p) \rangle = (p^+ + p'^+) F(z, Q^2)$

$$\langle \psi_h(p')|J_{\perp}(0)|\psi_h(p)\rangle = (p_{\perp}+p'_{\perp})F(z,Q^2)$$

but *F* depends on momentum transfer $Q^2 = -q^2$ and $z = \frac{q^+}{p'^+}$

Becomes indepent of *z* once Poincaré invariance is restored
 In practice, Drell–Yan frame, q⁺ = 0 (in combination with longitudinal current component J⁺) is preferred on the light-front, because vacuum pair production/annihilation is suppressed

$$\langle \psi_h(p')|J^+(0)|\psi_h(p)\rangle = (p^+ + p'^+) F(z = 0, Q^2)$$

・ロト ・ 四ト ・ ヨト ・ ヨト …

LF form factors

Light-Front Time ordering vs. Explicitly covariant

Leading Fock space

Higher Fock space

Covariant triangle diagrams have no time ordering; orientation is irrelevant

Time ordering matters on the Light-Front

Frame dependence of form factors

Yang Li, Maris, Vary, PRD97, 054034 (2018)

Define frames in terms of boost invariants $z = \frac{q^+}{\rho'^+}$ and

$$ec{\Delta}_{\perp} = ec{q}_{\perp} - z ec{p}_{\perp}' = p^+ \left(rac{ec{p}_{\perp}}{p'^+} - rac{ec{p}_{\perp}}{p^+}
ight)$$
 with mom. transfer $Q^2 = rac{z^2 M_h^2 + \Delta_{\perp}^2}{1-z}$

▶ Transverse (i.e. Drell–Yan) frame: z = 0 and $Q^2 = q_{\perp}^2 \ge 0$

• Longitudinal frame: $\Delta_{\perp} = 0$ and thus $Q^2 = \frac{z^2 M_h^2}{(1-z)}$

Form factor of (pseudo)scalar mesons in leading Fock sector

$$\begin{aligned} F(z,Q^2) &= \frac{\sqrt{1-z}}{1-\frac{1}{2}z} \sum_{s,\bar{s}} \int_0^1 \frac{\mathrm{d}x}{2x(1-x)} \int \frac{\mathrm{d}^2 k_\perp}{(2\pi)^3} \sqrt{\frac{x}{x+z(1-x)}} \\ &\times \psi^*_{s\bar{s}/h} \left(x+z(1-x), \vec{k}_\perp + (1-x)\vec{\Delta}_\perp \right) \ \psi_{s\bar{s}/h} \left(x, \vec{k}_\perp \right) \end{aligned}$$

15/63

Frame dependence of guarkonia charge form factors

Yang Li, Maris, Vary, PRD97, 054034 (2018)

Frame dependence

- stronger for charmonia than for bottomonia
- \triangleright stronger for η_c than for χ_c

Sources Lorentz symmetry violation

- Fock space truncation
- Effective interaction
 - confining potential in transverse and longitudinal direction
 - one-gluon exchange (transverse)

< 17 ▶

P. Maris (ISU)

Radiative decays

Electromagnetic transitions between quarkonium states via photon emission offers insight into the internal structure of quark-antiquark bound states

Hadron matrix elements parametrized by trantision form factor $V(Q^2)$

$$J^{\mu}_{m_j}(P,P') \equiv \langle \mathcal{P}(P')|J^{\mu}|\mathcal{V}(P,m_j)
angle = rac{2V(Q^2)}{m_{\mathcal{P}}+m_{\mathcal{V}}}\epsilon^{\mulphaeta\sigma}P'_{\ lpha}P_{eta}e_{\sigma}(P,m_j)$$

where $q^{\mu} = P'^{\mu} - P^{\mu}$ with $Q^2 \equiv -q^2 > 0$ spacelike and $e_{\sigma}(P, m_j)$ the vector meson polarization

P. Maris (ISU)

Radiative decay width

Physical decay: transition amplidute with on-shell photon

$$\mathcal{M}_{\textit{m}_{j},\lambda} \hspace{0.2cm} = \hspace{0.2cm} \langle \mathcal{P}(\textit{P}')\textit{J}^{\mu}(0)
angle \mathcal{V}(\textit{P},\textit{m}_{j}) \epsilon^{*}_{\mu,\lambda}(q) \textit{Big}|_{\textit{Q}^{2}=0}$$

where $\epsilon_{\mu,\lambda}$ is the photon polarization vector

On-shell decay width

$$\begin{split} \Gamma(\mathcal{V} \to \mathcal{P} + \gamma) &= \int \mathrm{d}\Omega_q \frac{1}{32\pi^2} \frac{|\vec{q}|}{m_{\mathcal{V}}^2} \frac{1}{2J_{\mathcal{V}} + 1} \sum_{m_j,\lambda} |\mathcal{M}_{m_j,\lambda}|^2 \\ &= \frac{(m_{\mathcal{V}}^2 - m_{\mathcal{P}}^2)^3}{(2m_{\mathcal{V}})^3 (m_{\mathcal{P}} + m_{\mathcal{V}})^2} \frac{|V(0)|^2}{(2J_{\mathcal{V}} + 1)\pi} \end{split}$$

18/63

4 A N

Transition form factors

Evaluation on the Light-Front (Drell-Yan frame)

Amplitudes depend on current component and vector meson polarization

$$I_{m_{j}}^{+} = \frac{2V(Q^{2})}{m_{\mathcal{P}} + m_{\mathcal{V}}} \begin{cases} 0, & m_{j} = 0\\ \frac{i}{\sqrt{2}}P^{+}\Delta^{R}, & m_{j} = 1\\ -\frac{i}{\sqrt{2}}P^{+}\Delta^{L}, & m_{j} = -1 \end{cases}$$
$$I_{m_{j}}^{R} = \frac{2V(Q^{2})}{m_{\mathcal{P}} + m_{\mathcal{V}}} \begin{cases} -im_{\mathcal{V}}\Delta^{R}, & m_{j} = -1\\ \frac{i}{\sqrt{2}}P^{R}\Delta^{R}, & m_{j} = 1\\ \frac{i}{\sqrt{2}z}(z^{2}m_{\mathcal{V}}^{2} - m_{\mathcal{P}}^{2} - {P'}^{R}\Delta^{L}), & m_{j} = -1 \end{cases}$$

using $z \equiv {P'}^+/P^+$ and $\vec{\Delta}_{\perp} = \vec{P}'_{\perp} - z\vec{P}_{\perp}$, and notation $k^{R,L} = kx \pm iky$

Transverse and longitudinal current components give same results for vector meson spin polarization m_i = ±1

19/63

Radiative decay quarkonia

- Drell–Yan frame
 - Transverse current component with spin component m_j = 0 probes dominant components of vector meson LFWF
 - Longitudinal current J⁺ w. spin component m_j = 1 probes small components vector meson LFWF which vanish in non-relativistic limit

Transverse current J_{\perp} , with vector meson $m_j = 0$, more robust because it involves dominant (non-relativistic) LFWF components

Transition form factors

Frame dependence transition form factors

Meijian Li, Yang Li, Maris, Vary, PRD100, 036006 (2019); Tang, Jia, Maris, Vary, arxiv:2002.06489 (2020)

- Boost invariants $z = \frac{q^+}{p_A^+}$ and $\vec{\Delta}_{\perp} = \vec{q}_{\perp} - z\vec{p}_{A\perp}$
- Momentum transfer $q^2 = z \left(M_A^2 - \frac{M_B^2}{1-z} \right) - \frac{\Delta_{\perp}^2}{1-z}$
- Drell–Yan frame: z = 0 with q² = −∆²_⊥ limited to spacelike momentum transfers
- ► Longitudinal frame: $\vec{\Delta}_{\perp} = 0$ with $q^2 = z M_A^2 - \frac{z M_B^2}{1-z}$ spacelike and timelike up to $q_{max}^2 = (M_A - M_B)^2$

Transition form factors

Meijian Li, Yang Li, Maris, Vary, PRD100, 036006 (2019)

- Drell–Yan and Longitudinal frame connect continuously at q² = 0, but derivative is dicontinuous
- Transitions between states with same radial quantum number V(nS) → P(nS)
 - depend weakly on frame
 - dependence decreases with increasing mass
- Transitions between states with different radial quantum number depend strongly on choice of frame

Unequal quark masses: B_c mesons Tang, Li, Maris, Vary, PRD98, 114038 (2018)

Use parameters as fitted for charmonium and bottomonium

Transition form factors

Semi-leptonic decay $B_c \rightarrow \eta_c$

Tang, Jia, Maris, Vary, arxiv:2002.06489 (2020)

$$egin{aligned} \langle P_{\eta_c}'|V^\mu|P_{\mathcal{B}_c}
angle &= f_+(q^2)P^\mu + f_-(q^2)q^\mu \ &= f_+(q^2)\left(P^\mu - rac{M_{\mathcal{B}_c}^2 - M_{\eta_c}^2}{q^2}q^\mu
ight) + f_0(q^2)rac{M_{\mathcal{B}_c}^2 - M_{\eta_c}^2}{q^2}q^\mu \end{aligned}$$

Use longitudinal and transverse current components to calculate f_{\pm}

Transition form factors

Semi-leptonic decay $B_c \rightarrow J/\psi$

Tang, Jia, Maris, Vary, arxiv:2002.06489 (2020)

- Vector form factor (analogous to electromagnetic transition): use m_j = 0 and transverse current
- Axial form factors: use both m_j = 0 and m_j = 1, as well as both transverse and longitudinal current

Semi-leptonic decay width

Differential decay width for $B_c \rightarrow \eta_c \, e \, \bar{\nu}$ and $B_c \rightarrow J/\psi \, e \, \bar{\nu}$

- Significant dependence of differential decay width on choice of frame for both decay to η_c and decay to J/ψ
- Decay to J/ψ almost independent of computational details, but decay to η_c not well converged

Conclusions on the Light-Front

- Quarkonium forms an ideal system to develop and validate methods to compute Light-Front Wave Functions
 - even simpler: scalar Yukawa model
- Basis Light-Front Quantization
 - obtain LFWF as eigenfunctions of effective LF Hamiltonian
 - limited to minimal Fock space
 - fit model parameters to reproduce spectrum
 - use LFWF to evaluate form factors
- Open questions (at least to me)
 - Fock space convergence
 - restoration of Lorentz invariance
 - dynamical symmetry breaking
 - zero-modes

DSEs

Nonperturbative QCD: Dyson–Schwinger Equations

- Infinite hierarchy of coupled integral eqns for Green's functions of QCD
- Reduce to pQCD in weak coupling limit
- Nonperturbative
- Truncation needed
- Constraints on truncation
 - Preserve symmetries
 - Self-consistency
- aka Dyson–Schwinger Eqns

4 O N 4 🗐 N 4 E N 4

DSEs

Nonperturbative quark propagator (Euclidean Metric)

Satisfies Dyson–Schwinger equation

$$S(p)^{-1} = i \not p Z_2 + m_q(\mu) Z_4 + Z_1^g \int \frac{d^4k}{(2\pi)^4} g^2 D_{\mu\nu}(q) \gamma_{\mu} \frac{\lambda^a}{2} S(k) \Gamma_{\nu}(k,p) \frac{\lambda^a}{2}$$

Nonlinear integral equation for the quark propagator

- coupled nonlinear integral equations for $M(p^2)$ and $Z(p^2)$
- Allows for a nontrivial solution M(p²) ≠ 0 even if m_q = 0 provided the long-range part of the interaction is sufficiently strong
 - dynamical chiral symmetry breaking
 - pions are the (near) massless Goldstone bosons

Model for effective interaction

- ► Rainbow truncation for quark DSE $Z_1^g g^2 D_{\mu\nu}(q) \Gamma_{\nu}(k, p) \longrightarrow 4\pi \alpha_{\text{model}}(q^2) D_{\mu\nu}^{\text{free}}(q) \gamma_{\nu}$
- Assume dressed vertex times dressed gluon has the same tensor structure as bare vertex times free gluon propagator
- Use Landau gauge
 - in principle we could use any covariant gauge
- Use pQCD for UV behavior
- Model for IR behavior of $\alpha(q^2)$ fitted to give chiral condensate $\langle \bar{q}q \rangle = -(240 \text{ MeV})^3$

DSEs

Model results for nonperturbative quark propagator

- ► Rainbow truncation for quark DSE $Z_1^g g^2 D_{\mu\nu}(q) \Gamma_{\nu}(k,p) \longrightarrow 4\pi \alpha_{\text{model}}(q^2) D_{\mu\nu}^{\text{tree}}(q) \gamma_{\nu}$
- Evolution from constituent quark mass to current quark mass
 M(p²) connects constituent mass with perturbative QCD

DSEs

Nonperturbatively dressed quark propagator

- Predictions from solution of the quark DSE have been confirmed by lattice simulations of QCD
- Detailed comparison lattice simulations and DSE soln possible

Maris, Raya, Roberts, & Schmidt, EPJA18, 231 (2003)

Lattice-inspired DSE model: Bhagwat, Pichowsky, Roberts, Tandy, PRC68, 015203 (2003) Quenched lattice data: Bowman, Heller, Leinweber, Williams, NP Proc.Suppl.119, 323 (2003)

P. Maris (ISU)

LF wfns, BSAs, and form factors

Hadrons

- Bound states of nonperturbatively dressed quarks
- Pole in color-singlet n-point functions of QCD
- Bound state amplitudes F describe coupling between

Quark-antiquark bound states satisfy homogeneous Bethe–Salpeter equation at mass pole $P^2 = -M_{meson}^2$

$$\Gamma_{H}(p; P) = \int \frac{d^{4}k}{(2\pi)^{4}} K(p, k; P) S(k + P/2) \Gamma_{H}(k; P) S(k - P/2)$$

- K(p, k; P): amputated $q\bar{q}$ scattering kernel
- Quark propagators nonperturbatively dressed

Euclidean formulation

- Meson BSA functions of two independent variables: p^2 and $p \cdot P$
- Rest-frame P = (iM, 0, 0, 0)
- Relative momentum p Euclidean
 - p² space-like
 - p · P imaginary in rest-frame
- Integration variable k Euclidean
- Quark propagator arguments $k^2 \pm k \cdot P + M^2/4$ become complex
- Constituent propagators: no problem for bound states. that is, for M < 2m
 - e.g. constituent quark mass of 400 MeV fine for π and ρ

< 6 b

Analytic continuation of dressed quark propagator

$$\begin{aligned} \mathcal{A}(p^2) &= 1 + \int \frac{d^4k}{4\pi^3} \, \frac{\alpha(q^2)}{q^2} \frac{\mathcal{A}(k^2) \, \mathcal{K}^A(p^2, k^2, p \cdot k)}{k^2 \, \mathcal{A}^2(k^2) + \mathcal{B}^2(k^2)} \\ \mathcal{B}(p^2) &= m_q(\mu) + \int \frac{d^4k}{4\pi^3} \, \frac{\alpha(q^2)}{q^2} \frac{4 \, \mathcal{B}(k^2)}{k^2 \, \mathcal{A}^2(k^2) + \mathcal{B}^2(k^2)} \end{aligned}$$

- Fit Euclidean solution with your favorite function
 - results will (strongly) depend on choice of functional form
- Use Taylor expansion of Euclidean solution
 - limited range, but should be okay for light systems
- Calculate A(p²) and B(p²) at complex momenta p² after solving quark DSE on real Euclidean axis
 - only correct if effective interaction α vanishes at q² = 0, otherwise, pinch-singularity forces integration path dk through k = p
- Analytic continuation of quark DSE into complex plane
 - can be done, but is nontrivial to avoid branch-cuts

Lightest quark-antiquark states: Pions

$$\Gamma_{\rm PS}(p; P) = \int \frac{d^4k}{(2\pi)^4} \, K(p, k; P) \, S(k + P/2) \, \Gamma_{\rm PS}(k; P) \, S(k - P/2)$$

Decompose Bethe–Salpeter amplitude $\Gamma_{PS}(k; P)$ in Lorentz invariants $\gamma_5[iE_{\pi}(k^2, k \cdot P) + PF_{\pi}(k^2, k \cdot P) + k G_{\pi}(k^2, k \cdot P) + \sigma_{\mu\nu} k_{\mu} P_{\nu} H_{\pi}(k^2, k \cdot P)]$ Axial-Vector WTI

$$-iP_{\mu}\,\Gamma_{5\mu}(k;P) = S^{-1}(k_{+})\,\gamma_{5} + \gamma_{5}\,S^{-1}(k_{-}) - 2\,m_{q}(\mu)\,\Gamma_{5}(k;P)$$

- Pions are Goldstone bosons: massless in chiral limit
- ► Dominant pion BS amplitude E_{π} in chiral limit $E_{\pi}(p^2) = B(p^2)/f_{\pi}$
- Gell-Mann–Oakes–Renner relation $f_{\pi}^2 m_{\pi}^2 = -2 m_q(\mu) \langle \bar{q}q \rangle_{\mu}$
- Decay constant of excited pions vanishes in chiral limit

Rainbow-Ladder truncation with Maris–Tandy model

- Beyond RL corrections small for pseudoscalar and vector mesons
- Significant corrections for scalar and axial-vectors
- Have to couple to 4 quark amplitudes (Eichmann, Fischer)
 - meson-loop effects (width) for quark-antiquark states
 - meson-molecules, diquark-antidiquark, ...

P. Maris (ISU)

LF wfns, BSAs, and form factors

Frame independence

• Meson BSE: discrete solutions at $P^2 = -M^2$

$$\Gamma_{H}(p;P) = \frac{-4}{3} \int \frac{d^{4}k}{(2\pi)^{4}} 4\pi \alpha ((p-k)^{2}) D_{\mu\nu}(p-k) \gamma_{\mu} S(k+P/2) \Gamma_{H}(k;P) S(k-P/2) \gamma_{\nu}$$

• rest frame:
$$P = (iM, 0, 0, 0)$$

- moving meson: P = (iE, q, 0, 0) with $E^2 = M^2 + q^2$
- Taylor expansion from rest frame to moving frame: ok for small q^2
- Solve BSE in moving frame

Maris, Tandy, nucl-th/0511017

- Numerically more expensive
 - more independent variables

- p · P complex, instead of imaginary
- Limited by analytic structure of quark propagators

Analytic structure of rainbow DSE solution

- Landau gauge, bare vertex, pQCD for UV behavior of coupling
- Model for IR behavior of $\alpha(q^2)$ fitted to give chiral condensate $\langle \bar{q}q \rangle = -(240 \text{ MeV})^3$
- Solution appears to have pair of complex-conjugate singularities rather than real mass-like pole
- Allows for bound state calculations of light mesons up to masses of about ~ 1.2 GeV²
- Similar structure found for a wide range of models, as well as from lattice QCD

Meson electromagnetic form factors

- Meson BS amplitude
 - in moving frame
 - Quark-photon coupling

Nonperturbative QFT approach based on QCD dynamics reproduces pQCD results explicitly relativistic, Poincaré invariant

 π

aller

 π

Form factors

Quark-photon coupling

- Electromagnetic current conservation $\partial_{\mu}J^{\mu} = 0$
- Vector Ward–Takahashi identity

$$i P_{\mu} \Gamma_{\mu}(k_{+},k_{-};P) = S^{-1}(k+P/2) - S^{-1}(k-P/2)$$

Inhomogeneous Bethe–Salpeter equation for the quark-photon vertex

- Same kernel K as meson bound state eqn
 - Solve for $\Gamma^{T}_{\mu}(k_{+}, k_{-}; P) = \sum_{i=0}^{8} T^{i}_{\mu}(k, P) F_{i}(k^{2}, k \cdot P; P^{2})$
- Guarantees electromagnetic current conservation.

Form factors

Pion electromagnetic form factor

$$\Lambda_{\mu}(P,Q) = 2 P_{\mu} F_{\pi}(Q^2) = N_c \int \frac{d^4 k}{(2\pi)^4} \operatorname{Tr}[\bar{\Gamma}^{\pi} S i \Gamma_{\mu} S \Gamma^{\pi} S]$$

- Within numerical accuracy, results independent of
 - choice integration variables
 - form factor frame

Note: Form factor has pole at vector meson masses

• quark-photon vertex BSE has poles at $Q^2 = -M_{\rho,\omega,\phi,\dots}$

Form factors

Pion form factor in RL truncation

Maris, Tandy, PRC62,055204 (2000) [nucl-th/0005015]

Tadevosyan et al. [Fpi2 Collaboration], nucl-ex/0607007;

Calculation with MT model straightforward up to Q² = 4 GeV² using consistently dressed propagators and vertices without nontrivial deformations of integration contours

P. Maris (ISU)

LF wfns, BSAs, and form factors

LC seminar series 2020

Semi-leptonic decays

Kaon semi-leptonic decay

$$J^{K^{0}}_{\mu}(P,Q) = \langle \pi^{-}(p) | \bar{s} \gamma_{\mu} u | K^{0}(k) \rangle = f_{+}(-Q^{2}) P_{\mu} + f_{-}(-Q^{2}) Q_{\mu}$$
$$= N_{c} \int \frac{d^{4}q}{(2\pi)^{4}} \operatorname{Tr} \left[S^{d} \Gamma^{d\bar{s}}_{K} S^{s} i \Gamma^{s\bar{u}W}_{\mu} S^{u} \bar{\Gamma}^{u\bar{d}}_{\pi} \right]$$

with $P_{\mu}=(p+k)_{\mu}$ and $Q_{\mu}=(k-p)_{\mu},$ and $P\cdot Q=m_{\pi}^2-m_k^2$

PVV transition form factors

CELLO CLEO DSE calculation VMD a monopol

DSE calculation VMD

vmonopole Mitchel-Tandy 1995

I monopol

Maris, Tandy, PRC65, 045211 (2002)

$$\Lambda_{\mu\nu}^{PVV}(P;Q) = N_c \int \mathrm{Tr} \left[S \, \Gamma_P \, S \, \Gamma_\mu \, S \, \Gamma_\nu \right] = F_{PVV} \left((P+Q)^2, P^2, Q^2 \right) \epsilon_{\mu\nu\rho\sigma} \, P_\rho \, Q_\sigma$$

 $\pi\gamma\gamma$ transition

- constraint by axial anomaly: $g_{\pi\gamma\gamma} = 0$ in chiral limit
- anomaly perfectly reprocuced
- form factor agrees with data

 $ho\pi\gamma$ and $\omega\pi\gamma$ transition

	calc. g/m	expt. g/m
$\rho^{0} \rightarrow \pi^{0} \gamma$	$0.68 { m GeV^{-1}}$	$0.9\pm.2$
$\rho^{\pm} \to \pi^{\pm} \gamma$	0.68	$0.74\pm.05$
$\omega^{0} \rightarrow \pi^{0} \gamma$	2.07	$\textbf{2.31} \pm .0\textbf{8}$

form factor in agreement with available data

Q² [GeV²

Q² (GeV²)

1.0 ço

ĝ 1

0.

0.0

LF wfns, BSAs, and form factors

Beyond triangles: γ -3 π form factor

 Use ladder kernel not only for propagators and vertices, but also inside box diagrams in order to preserve symmetries

6000000

• Results for $\pi\pi$ scattering agree with dynamical χ SB

+

 Need to include 4 quark amplitudes in order to incorporate pion loop effects

Challenge: From Euclidean BSAs to LFWFs

Can we extract the LFWFs from the Euclidean BSAs ?

- Solve Bethe–Salpeter Eqn 'near' Minkowski space
 - explicit Wick rotation back to Minkowski space, starting from converged solution in Euclidean space
- Project (approximate) Minkowski BSA onto the Light-Front

work in progress

- Nakanishi formulation
 - can be implemented for BSE, using constituent propagators
 - implementation for fermion DSE more difficult
- work in progress

48/63

applicability to confined states unclear to me

Nakanishi integral representation

Nakanishi, Phys.Rev. 130, 1230 (1963); Prog.Theor.Phys.Suppl. 43, 1 (1969)

For propagators (2-point functions) of asymptotic states

$$\mathcal{S}(p) = -i \int_0^\infty d\gamma rac{
ho(\gamma)}{\left(\gamma + m^2 - p^2 - i\epsilon
ight)^n}$$

n = 1 gives usual Källen–Lehmann representation

For two-body BSA for bound state with mass $M^2 = P^2$

$$\Gamma(p; P) = -i \int_{-1}^{1} dz \int_{0}^{\infty} d\gamma \frac{g(\gamma, z)}{(\gamma + m^2 - M^2/4 - p^2 - p \cdot P z - i\epsilon)^n}$$

- Used for
 - 2-body scalar BSE
 fermion DSE and BSE
 recent work: Carbonell, Karmanov, Frederico, Salmè, ...

Un-Wick rotating from Euclidean to Minkowski metric

 $\Gamma(p; P) = g^2 \int_{-\infty}^{\infty} dk_0 \int \frac{d^3 \vec{k}}{(2\pi)^4} K(p, k; P) S(k + p/2) \Gamma(k; P) S(k - p/2)$ Un-Wick rotate p_0 and k_0 from Euclidean metric

in decrements θ starting from $\theta = \pi/2$

$$p_4 \rightarrow \exp(-i(\pi/2-\theta)) p_4 = \exp(i\theta) p_0$$

 $k_4 \rightarrow \exp(-i(\pi/2-\theta)) k_4 = \exp(i\theta) k_0$

- Solve BSE iteratively as function of p₀ and p² along rotated p₀ axis, starting with solution at previous value of θ, to obtain Green's functions as function of p₀ e^{iθ} and p², instead of as function of Lorentz scalar p²
- Use Pauli–Villars regulator to remove UV divergences
- Approach Minkowski space for $\theta \rightarrow 0$
 - space-like region $p_0^2 = 0$ with $\vec{p}^2 > 0$
 - time-like region $p_0^2 > 0$ with $\vec{p}^2 = 0$
- Manifestly covariant BSA for space- and time-like momenta

Example: scalar model in ladder truncation

Castro *et al*, JPCS 1291, 012006 (2019) Use Nakanishi representation for $\chi(k; P)$ at $P^2 = M^2$

$$\chi(k; P) \equiv \Delta(k + P/2) \Gamma(k; P) \Delta(k - P/2)$$

= $-i \int_{-1}^{1} dz \int_{0}^{\infty} d\gamma \frac{g(\gamma, z)}{(\gamma + m^2 - P^2/4 - k^2 - k \cdot P z - i\epsilon)^3}$

 $\alpha = 5.48$, $\mu/m = 0.2$, M/m = 1.0, $\theta = \pi/16$, k /m = 0.067

Calculate Γ using Δ⁻¹ χ Δ⁻¹
 Γ has singularities at

$$k_0^{\pm} = \sqrt{(m+\mu)^2 + \vec{k}^2} \pm \frac{M}{2}$$

• $\chi(k; P)$ contains constituent poles at $k \cdot p = \pm (k^2 - m^2 + M^2/4)$, as well as above singularities

BSAs to LFWFs

Spacelike and (almost) timelike BS Amplitudes

Castro et al, JPCS 1291, 012006 (2019)

Γ(k₀, k
 [']) has singularities at k₀[±] = √(m + μ)² + k² ± M/2
 χ = Δ Γ Δ has additional singularities due to the mass poles in the constituents Δ(P/2 ± k)

LFWF from Covariant Bethe–Salpeter Amplitude

work in progress, w. Ydrefors, de Paula, Frederico, Jia, ...

Project BSA $\chi(k; P) = \Delta(k + P/2) \Gamma(k; P) \Delta(-k + P/2)$ onto the light-front to obtain the LFWF $\psi(x, k_{\perp})$

$$\psi(\mathbf{x},\mathbf{k}_{\perp}) = i \mathbf{P}^+ \mathbf{x} (1-\mathbf{x}) \int_{-\infty}^{\infty} \frac{d\mathbf{k}^-}{2\pi} \chi(\mathbf{k};\mathbf{P})$$

- Can be done with Nakanishi representation for χ
- Can be approximated by un-Wick rotating the BSE from the spacelike region and project

$$\psi_{\theta}(k^+, k_{\perp}) = i M \left(\frac{1}{2} + \frac{k^+}{M}\right) \left(\frac{1}{2} - \frac{k^+}{M}\right) \int \frac{dk^-}{2\pi} \chi(k_{\theta}; p)$$

where $k_{ heta} = (k_0 \exp(i\theta), \vec{k})$, and $k^{\pm} = k_0 \pm k_3$

In the limit θ → 0, the 'quasi' LFWF ψ_θ(k⁺, k_⊥) becomes the LFWF ψ(x, k_⊥) with x = ¹/₂ + ^{k⁺}/_M

BSAs to LFWFs

Example: LFWF for scalar model

work in progress, w. Ydrefors, de Paula, Frederico, Jia, ...

Perfect agreement for 'quasi' LFWF ψ_θ(k⁺, k_⊥) at θ > 0 between independent calculations using the Nakanishi Intergral Representation and by un-Wick rotating the BSE from the spacelike region

BSAs to LFWFs

LFWF from covariant Bethe–Salpeter Eqn

- Finite domain
 0 < x < 1
 arises naturally
 as θ decreases
- No need to constrain range on k⁺
- However, as k_⊥ increases, one needs very small values of θ
- Can take the limit $\theta \rightarrow 0$ with NIR

< ロ > < 同 > < 回 > < 回 >

P. Maris (ISU)

Valence probability

Valence probability from projected BSA

$$\mathcal{P} = \int_0^1 \frac{dx}{x(1-x)} \int \frac{d^2 k_\perp}{2(2\pi)^3} |\psi(x,k_\perp)|^2$$

$$\mathcal{P} \sim 0.65$$
 to 0.8 for moderate and strong binding

P → 1 in the limit of zero binding

Frederico, Salmè, Viviani, PRD89 016010 (2014)

- ► BSA also contains contributions from $|q\bar{q}g\rangle$ Fock sectors as is also evident from the singularities at $k_0^{\pm} = \sqrt{(m+\mu)^2 + \vec{k}^2} \pm \frac{M}{2}$ Castro *et al*, JPCS 1291, 012006 (2019)
- Calculate (light-front) observables directly from BSA instead of projecting BSA on the LFWF, and computing observables from LFWF

Conclusion BSAs and outlook

- Nonperturbatively dressed quark propagator connects current quark mass and pQCD with constituent quark models
- Preserve relevant symmetries and properties
 - Poincaré invariance
 - axial-vector WTI for chiral symmetry & chiral symmetry breaking
 - vector WTI for electromagnetic observables
- Mesons can be described accurately as $q\bar{q}$ bound states
 - form factors in good agreement with available data
- Challenge
 - beyond rainbow-ladder
 - incorporating open decay channels
 - observables defined on the light-front (GPDs, ...)

Outlook

- project meson BSA onto LF wavefunction
- use BSA directly to calculate LF observables

P. Maris (ISU)

Electromagnetic form factors in BLFQ

Frame dependence of form factors in light-front dynamics,

Yang Li, Maris, Vary, PRD97, 054034 (2018)

- Radiative transitions between 00⁻⁺ and 1⁻⁻ heavy quarkonia on the light front, Meijian Li, Yang Li, Maris, Vary, PRD98, 034024 (2018)
- Form factors and generalized parton distributions of heavy quarkonia in basis light front quantization,

Adhikari, Yang Li, Meijian Li, Vary, PRD99, 035208 (2019)

- Frame dependence of transition form factors in light-front dynamics, Meijian Li, Yang Li, Maris, Vary, PRD100, 036006 (2019)
- Semileptonic Decay of B_c to η_c and J/ψ on the Light Front,

Tang, Jia, Maris, Vary, arxiv:2002.06489 (2020), submitted for publication

Electromagnetic form factors in DSE approach

► The pi, K+, and K0 electromagnetic form factors,

Maris, Tandy, PRC62,055204 (2000)

Electromagnetic transition form factors of light mesons,

Maris, Tandy, PRC65, 045211 (2002)

- K(I3) transition form factors,
- Ladder Dyson–Schwinger calculation of the anomalous gamma-3pi form factor, Cotanch, Maris, PRD68 036006 (2003)
- Electromagnetic properties of ground and excited state pseudoscalar mesons,
 Höll, Krassnigg, Maris, Roberts, PRC71, 065204 (2005)
- QCD modeling of hadron physics, Maris, Tandy, NPB Proc.Suppl. 161, 136 (2006)
- Hadron Physics and the Dyson-Schwinger Equations of QCD,

Maris, AIP Conf. Proc. 892, 65 (2007)

Vector meson form factors and their quark-mass dependence,

Bhagwat, Maris, PRC77, 025203 (2008)

C-R. Ji, Maris, PRD64, 014032 (2001)

Fock-space convergence in scalar Yukawa theory

 $|\chi_{\rm ph}\rangle = |\chi\rangle + |\chi\varphi\rangle + |\chi\varphi\varphi\rangle + |\chi\varphi\varphi\varphi\rangle + |\chi\varphi\varphi\varphi\varphi\rangle + \cdots$

Diagrams in the one-body sector:

Fock-space convergence in scalar Yukawa theory

 $|\chi_{\rm ph}\rangle = |\chi\rangle + |\chi\varphi\rangle + |\chi\varphi\varphi\varphi\rangle + |\chi\varphi\varphi\varphi\varphi\rangle + |\chi\varphi\varphi\varphi\varphi\rangle + \cdots$

Diagrams in the one-body sector:

Fock-space convergence in scalar Yukawa theory

 $|\chi_{\mathrm{ph}}
angle = |\chi
angle + |\chiarphi
angle + |\chiarphiarphi
angle + |\chiarphiarphiarphi
angle + |\chiarphiarphiarphi
angle + |\chiarphiarphiarphi
angle + \cdots$

Diagrams in the one-body sector:

P. Maris (ISU)

LC seminar series 2020 62/63

Convergence of form factor with Fock space expansion

Yang Li, Karmanov, Maris, Vary, PLB748, 278 (2015)

Obtain solutions of the charge-one sector up to four-body: $\chi+\varphi\varphi\varphi$

Study the convergence of Fock sector expansion by comparing different Fock sector truncations

Fock sector convergence of the electromagnetic form factor:

