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1 THREE QUESTIONS

(1) Is light-front quantization at equal x+ = x0 + x3 the same theory as
instant-time quantization at equal x0, or is it a different theory?

(2) Are the Hamiltonians the same or different. If different, which one de-
scribes nature? Are the Hamiltonians even related?

(3) Is there anything in quantum field theory that is not accounted for by the
on-shell Light-Front Hamiltonian description of physics?
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THREE ANSWERS

(1) YES, even though equal x0 and equal x+ commutators and anticommutators look to be
so different.

(2)YES, because of general coordinate invariance. x0 → x0 + x3 is a spacetime depen-
dent translation not a Lorentz transformation. The momentum generators and thus the
Hamiltonians are unitarily equivalent.

(3) YES, but only in the vacuum sector, because of zero modes with p− = 0.

Mass-shell conditions

(p0)2 − (p3)2 − (p1)2 − (p2)2 = 4p+p− − (p1)2 − (p2)2 = m2, 2p+ = p0 + p3, 2p− = p0 − p3,

Instant : p0 = ±[(p1)2 + (p2)2 + (p3)2 + m2]1/2, well− behaved at p3 = 0.

Front : p+ =
(p1)2 + (p2)2 + m2

4p−
, singular at p− = 0. (1.1)

Key Features

Light-Front Fock space is equivalent to Light-Front Hamiltonian and both correspond to pole
terms in Feynman diagrams. Also correspond to instant-time graphs in infinite momentum
frame. However in vacuum graphs also get circle at infinity contributions, and with
them instant-time and light-front vacuum graphs prove to be equal. But instant-time graphs
have no p− = 0 zero mode problem. Therefore zero-mode problem must have a solution.
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2 INSTANT-TIME AND LIGHT-FRONT FOCK SPACE EXPANSIONS

Instant-Time Scalar Field Fock Space Expansion with E2
p = p2

1 + p2
2 + p2

3 + m2

φ(x0, x1, x2, x3) =
1

(2π)3/2

∫
d3p

(2Ep)1/2
[a(~p)e−iEpt+i~p·~x + a†(~p)e+iEpt−i~p·~x]. (2.1)

Contains −∞ ≤ p3 ≤ ∞, well-behaved at p3 = 0.

Light-Front Scalar Field Fock Space Expansion with F 2
p = (p1)2 + (p2)2 + m2

φ(x+, x1, x2, x−) =
2

(2π)3/2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
(4p−)1/2

×
[
e−i(F

2
p x

+/4p−+p−x−+p1x
1+p2x

2)a(p1, p2, p−) + ei(F
2
p x

+/4p−+p−x−+p1x
1+p2x

2)a†p(p1, p2, p−)

]
. (2.2)

Singular at p− = 0, undefined at x+ = 0, p− = 0. (p− = p+/2, p+ = p−/2).

Contains 0 ≤ p− ≤ ∞ only, Light-Front Hamiltonian approach restricts to p− > 0, p+ <∞.

Thus go beyond Light-Front-Hamiltonian if have processes with p− = 0.

This happens in vacuum sector where tadpole is −i〈Ω|φ(0)φ(0)|Ω〉 with x+ = 0.

If bring zero four-momentum into cross in vacuum tadpole then only allowed momentum

in loop has p− = 0. If exclude p− = 0 then tadpole is zero. Potential solution to cosmological

constant problem. Fails since have to deal with indeterminacy of x+/p− at x+ = 0, p− = 0.
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3 INSTANT-TIME AND LIGHT-FRONT COMMUTATORS

T µν =
2

(−g)1/2

δ

δgµν

∫
d4x(−g)1/2L, Pµ =

∫
d3xT 0

µ, [Pµ, φ(x)] = −i∂µφ(x). (3.1)

Scalar instant-time commutators, KE = 1
2∂µφ∂

µφ, Π = ∂0φ = ∂0φ

[φ(x0, x1, x2, x3), ∂0φ(x0, y1, y2, y3)] = iδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[φ(x0, x1, x2, x3), φ(x0, y1, y2, y3)] = 0. (3.2)

Scalar light-front commutators, KE = 1
2[∂+φ∂−φ−∂1φ∂

1φ−∂2φ∂
2φ], ∂+ = ∂0 +∂3, ∂− = ∂0−∂3,

Π = ∂+φ = 2∂−φ

[φ(x+, x1, x2, x−), 2∂−φ(x+, y1, y2, y−)] = iδ(x1 − y1)δ(x2 − y2)δ(x− − y−),

[φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2). (3.3)

Gauge field instant-time commutators, Πµ = −∂0Aµ = −∂0A
µ

[Aν(x
0, x1, x2, x3), ∂0Aµ(x0, y1, y2, y3)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[Aν(x
0, x1, x2, x3), Aµ(x0, y1, y2, y3)] = 0. (3.4)

Gauge field light-front commutators, Πµ = −∂+Aµ = −2∂−A
µ

[Aν(x
+, x1, x2, x−), 2∂−Aµ(x+, y1, y2, y−)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x− − y−),

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (3.5)
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4 INSTANT-TIME AND LIGHT-FRONT ANTICOMMUTATORS

Fermion instant-time anticommutators, Π = iψ†{
ψα(x0, x1, x2, x3), ψ†β(x0, y1, y2, y3)

}
= δαβδ(x

1 − y1)δ(x2 − y2)δ(x3 − y3). (4.1)

Fermion light-front anticommutators, Π = iψ†γ0(γ0 + γ3) = 2iψ†(+){
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x
− − y−)δ(x1 − y1)δ(x2 − y2). (4.2)

Projectors

Λ± = 1
2(1± γ0γ3), Λ+ + Λ− = I, (Λ+)2 = Λ+, (Λ−)2 = Λ−, Λ+Λ− = 0, γ± = γ0 ± γ3, (γ±)2 = 0,

ψ(±) = Λ±ψ, non-invertible projectors. (4.3)

ψ(−)(x
+, x1, x2, x−) = − i

4

∫
du−ε(x− − u−)[−iγ0(γ1∂1 + γ2∂2) + mγ0]ψ(+)(x

+, x1, x2, u−).

constrained variable. (4.4){
[ψ(+)]ν(x), [ψ†(−)]σ(y)

}
= i

8ε(x
− − y−)[i(γ−γ1∂x1 + γ−γ2∂x2 )−mγ−]νσδ(x

1 − y1)δ(x2 − y2), (4.5){
ψ(−)
µ (x+, x1, x2, x−), [ψ†(−)]ν(x

+, y1, y2, y−)
}

=
1

16
Λ−µν

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

] ∫
du−ε(x− − u−)ε(y− − u−)δ(x1 − y1)δ(x2 − y2). (4.6)

Sure look different, but..(Mannheim 2020)....
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5 UNEQUAL TIME COMMUTATORS AND ANTICOMMUTATORS – MASSLESS

FIELDS

UNEQUAL TIME Scalar instant-time commutator

i∆(x− y) = [φ(x0, x1, x2, x3), φ(y0, y1, y2, y3)]

=

∫
d3pd3q

(2π)3(2p)1/2(2q)1/2

(
[a(~p), a†(~q)]e−ip·x+iq·y + [a†(~p), a(~q)]eip·x−iq·y

)
=

∫
d3p

(2π)32p

(
e−ip·(x−y) − eip·(x−y)

)
= − i

2π

δ(x0 − y0 − |~x− ~y|)− δ(x0 − y0 + |~x− ~y|)
2|~x− ~y|

= − i

2π
ε(x0 − y0)δ[(x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2]. (5.1)

Since holds ALL times, also holds at EQUAL light front time.

Substitute x0 = (x+ + x−)/2, x3 = (x+ − x−)/2, y0 = (y+ + y−)/2, y3 = (y+ − y−)/2:

i∆(x− y) = − i

2π
ε[1

2(x+ + x− − y+ − y−)]δ[(x+ − y+)(x− − y−)− (x1 − y1)2 − (x2 − y2)2]. (5.2)

i∆(x− y)
∣∣
x+=y+

= [φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2). (5.3)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator

Light-front quantization is instant-time quantization, and does not need to be indepen-

dently postulated.
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UNEQUAL TIME Abelian gauge field instant-time commutator

[Aν(x
0, x1, x2, x3), Aµ(y0, y1, y2, y3)] = igµν∆(x− y)

= − i

2π
gµνε(x

0 − y0)δ[(x0)2 − (x1)2 − (x2)2 − (x3)2]. (5.4)

Leads to

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (5.5)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator
Similar result holds for non-Abelian gauge field.
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6 FERMION UNEQUAL INSTANT-TIME ANTICOMMUTATOR

{
ψα(x0, x1, x2, x3), ψ†β(y0, y1, y2, y3)

}
=
[
(iγµγ0∂µ

]
αβ
i∆(x− y). (6.1)

Apply projector and set x+ = y+

Λ+
αγ

{
ψγ(x

+, x1, x2, x−), ψδ(x
+, y1, y2, y−)

}
Λ+
δβ

=
{

[ψ(+)(x
+, x1, x2, x−)]α, [ψ

†
(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x
− − y−)δ(x1 − y1)δ(x2 − y2).

(6.2)

At x+ = y+ UNEQUAL instant-time anticommutator is EQUAL light-front time anticom-

mutator. Can also derive anticommutators involving bad fermions in the same way.

Light-front quantization is instant-time quantization, and does not need to be indepen-

dently postulated. The seemingly different structure between EQUAL instant-time and

EQUAL light-front time commutators is actually a consequence of the structure of UN-

EQUAL instant-time time commutators and anticommutators.

GENERAL RULE: ANY TWO DIRECTIONS OF QUANTIZATION THAT CAN BE
CONNECTED BY A GENERAL COORDINATE TRANSFORMATION DESCRIBE THE
SAME THEORY.
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7 MASSIVE FIELDS – SCALAR INSTANT-TIME CASE

i∆(IT ;x− y) = [φ(x0, x1, x2, x3), φ(y0, y1, y2, y3)]

=

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp3
1

(2π)32Ep

(
e−iEp(x

0−y0)+i~p·(~x−~y) − eiEp(x0−y0)−i~p·(~x−~y)
)
. (7.1)

Here p3 ranges from −∞ to ∞ and integrand is well-behaved at p3 = 0.

i∆(IT ; (x− y)2 > 0) =
im

4π
ε(x0 − y0)J1(m[(x− y)2]1/2)

[(x− y)2]1/2
,

i∆(IT ; (x− y)2 = 0) = − i

2π
ε(x0 − y0)δ[(x− y)2],

i∆(IT ; (x− y)2 < 0) = 0. (7.2)

Discontinuous at m = 0, go off shell and write a contour integral in p0 since ε(t) = θ(t) − θ(−t) and δ(t) are distributions
with

θ(t) = − 1

2πi

∮
dω

e−iωt

ω + iε
= − 1

2πi

∫ ∞
−∞

dω
e−iωt

ω + iε
, (7.3)

with t 6= 0 suppressing circle at infinity. As we will see, in t = 0 vacuum case, no suppression. Get θ(0) = 1/2.

i∆(IT ;x− y) = − 1

2πi

1

8π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp3

∮
dp0

×
[
θ(x0 − y0)e−ip·(x−y) − θ(−x0 + y0)eip·(x−y)

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 + iε
+
θ(x0 − y0)eip·(x−y) − θ(−x0 + y0)e−ip·(x−y)

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 − iε

]
. (7.4)

Introduce exponential regulator, with the iε term suppressing the α =∞ contribution when A is real∫ ∞
0

dα exp[iα(A+ iε)] = − 1

iA
, (7.5)

Obtain

i∆(IT ;x− y) = − i

4π2
ε(x0 − y0)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (7.6)
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8 MASSIVE FIELDS – SCALAR LIGHT-FRONT CASE

i∆(LF ;x− y) = [φ(x+, x1, x2, x−), φ(y+, y1, y2, y−)]

=
1

4π3

∫ ∞
−∞

dp1dp2

∫ ∞
0

dp−
4p−

[
e−i[F

2
p (x

+−y+)/4p−+p−(x−−y−)+p1(x1−y1)+p2(x2−y2)] − ei[F 2
p (x

+−y+)/4p−+p−(x−−y−)+p1(x1−y1)+p2(x2−y2)]
]
.

(8.1)

Here p− only ranges from 0 to ∞ and integrand is singular at p− = 0. So put p− into the exponential.

i∆(LF ;x− y) = − 1

2πi

1

4π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−

∮
dp+

×
[
θ(x+ − y+)e−ip·(x−y) − θ(−x+ + y+)eip·(x−y)

4p+p− − (p1)2 − (p2)2 −m2 + iε
+
θ(x+ − y+)eip·(x−y) − θ(−x+ + y+)e−ip·(x−y)

4p+p− − (p1)2 − (p2)2 −m2 − iε

]
= − i

4π2
ε(x+ − y+)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (8.2)

i∆(LF ; (x− y)2 > 0) =
im

4π
ε(x+ − y+)

J1(m[(x− y)2]1/2)

[(x− y)2]1/2
=
im

4π
ε(x− − y−)

J1(m[(x− y)2]1/2)

[(x− y)2]1/2
,

i∆(LF ; (x− y)2 = 0) = − i

2π
ε(x+ − y+)δ[(x− y)2] = − i

2π
ε(x− − y−)δ[(x− y)2],

i∆(LF ; (x− y)2 < 0) = 0. (8.3)

i∆(LF ;x− y) = − i

4π2
ε(x− − y−)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
,

i∆(IT ;x− y) = − i

4π2
ε(x0 − y0)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (8.4)

Substitute x0 = (x+ +x−)/2, x3 = (x+−x−)/2, y0 = (y+ + y−)/2, y3 = (y+− y−)/2, so that (x− y)2 = (x0− y0)2− (x3−
y3)2− (x1− y1)2− (x2− y2)2 → (x+− y+)(x−− y−)− (x1− y1)2− (x2− y2)2 the instant-time i∆(IT ;x− y) transforms into
the light-front i∆(LF ;x− y). We have thus achieved our main objective, showing that i∆(IT ;x− y) and i∆(LF ;x− y) are
related by a coordinate transformation, and are thus COMPLETELY EQUIVALENT.
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9 MASSIVE FERMION FIELDS

For instant-time case need FOUR-component fermion{
ψα(x0, x1, x2, x3), ψ†β(y0, y1, y2, y3)

}
=
[(
iγ0∂x0 + iγ3∂x3 + iγ1∂x1 + iγ2∂x2 + m

)
γ0
]
αβ
i∆(IT ;x− y). (9.1)

For light-front case again need FOUR-component fermion{
ψα(x+, x1, x2, x−), ψ†β(y+, y1, y2, y−)

}
=
[(
iγ+∂x+ + iγ−∂x− + iγ1∂x1 + iγ2∂x2 + m

)
γ0
]
αβ
i∆(LF ;x− y). (9.2)

Thus can derive unequal light-front time anticommutators from unequal instant-time anti-
commutators. PROVIDED INCLUDE GOOD AND BAD FERMIONS

But what happened to projected fermion anticommutators. We now derive them by project-
ing (9.2).
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{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(y+, y1, y2, y−)

}
= 2Λ+

αβi
∂

∂x−
i∆(LF ;x− y), (9.3)

{
[ψ(−)]α(x+, x1, x2, x−), [ψ†(−)]β(y+, y1, y2, y−)

}
= 2Λ−αβi

∂

∂x+
i∆(LF ;x− y). (9.4)

{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x− − y−)δ(x1 − y1)δ(x2 − y2).

(9.5){ ∂

∂x−
ψ(−)
α (x+, x1, x2, x−),

∂

∂y−
[ψ†(−)]β(y+, y1, y2, y−)

}
= 2iΛ−αβ

1

4

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

]
∂

∂x−
i∆(LF ;x− y). (9.6){ ∂

∂x−
ψ(−)
µ (x+, x1, x2, x−),

∂

∂y−
[ψ†(−)]ν(x

+, y1, y2, y−)
}

=
1

4
Λ−µν

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

]
δ(x− − y−)δ(x1 − y1)δ(x2 − y2). (9.7){

[ψ(+)]ν(x), [ψ†(−)]σ(y)
}

= i
8ε(x

− − y−)[i(γ−γ1∂x1 + γ−γ2∂x2 )−mγ−]νσδ(x1 − y1)δ(x2 − y2), (9.8)
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10 UNITARY EQUIVALENCE VIA TRANSLATION INVARIANCE

So far the discussion has only dealt with free theory commutators, and they just happen to be c-numbers.

However, for interacting theories we can only discuss matrix elements. With

[Pµ, φ] = −i∂µφ, [Pµ, Pν] = 0 (10.1)

to all orders in perturbation theory because of Poincare invariance, we introduce

U(P0, P3) = exp(ix3P0) exp(ix0P3). (10.2)

It effects

Uφ(IT ;x0, x1, x2,−x3)U−1 = φ(IT ;x0 + x3, x1, x2, x0 − x3) = φ(LF ;x+, x1, x2, x−)

(10.3)

Then with |ΩF 〉 = U |ΩI〉 we obtain

−i〈ΩI |[φ(IT ;x0, x1, x2,−x3), φ(0)]|ΩI〉 = −i〈ΩI |U †U [φ(IT ;x0, x1, x2,−x3), φ(0)]U †U |ΩI〉
= −i〈ΩF |[φ(LF ;x+, x1, x2, x−), φ(0)]|ΩF 〉, (10.4)

to all orders in perturbation theory. We thus establish the unitary equivalence of matrix elements of instant-time

and light-front commutators to all orders.
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The same equivalence holds for the all-order Lehmann representations. For the instant-time case we have

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 =
1

(2π)3

∫ ∞
0

dσ2ρ(σ2, IT )

∫
d4qε(q0)δ(q2 − σ2)e−iq·(x−y)

=

∫ ∞
0

dσ2ρ(σ2, IT )i∆(IT, FREE;x− y, σ2), (10.5)

where

ρ(q2, IT )θ(q0) = (2π)3
∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2, Pµ|pnµ〉 = pnµ|pnµ〉, (10.6)

as written in instant-time momentum eigenstates.

For the light-front case we have

〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉 =
2

(2π)3

∫ ∞
0

dσ2ρ(σ2, LF )

∫
d4qε(q+)δ(q2 − σ2)e−iq·(x−y).

=

∫ ∞
0

dσ2ρ(σ2, LF )i∆(LF, FREE;x− y, σ2), (10.7)

where

ρ(qµ, LF ) =
(2π)3

2

∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2 = ρ(q2, LF )θ(q+), (10.8)

as written in light-front momentum eigenstates. Specifically, with

U |pn0〉 = |pn+〉, U |pn3〉 = |pn−〉, U |pn1〉 = |pn1〉, U |pn2〉 = |pn2〉 (10.9)

we obtain the all-order

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 = 〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉. (10.10)
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With the all-order momentum operators having real and complete eigenspectra we have the all-order

Pµ(IT ) =
∑
|pn(IT )〉pnµ(IT )〈pn(IT )|, Pµ(LF ) =

∑
|pn(LF )〉pnµ(LF )〈pn(LF ). (10.11)

With eigenvalues not changing under a unitary transformation, we obtain

P0(IT ) = UP0(IT )U−1 = U
∑
|pn(IT )〉pn0〈pn(IT )|U †

=
∑
|pn(LF )〉(pn+ + pn−)〈pn(LF )| = P+(LF ) + P−(LF ). (10.12)

Given (10.11) and (10.12), there initially appears to be a mismatch between the eigenstates of P0(IT ) and

P+(LF ). However, for any timelike set of instant-time momentum eigenvalues we can Lorentz boost p1, p2

and p3 to zero, to yield

p1 = 0, p2 = 0, p3 = 0, p0 = m. (10.13)

If we impose this same p1 = 0, p2 = 0, p3 = 0 condition on the light-front momentum eigenvalues we would

set p+ = p−, p2 = 4p2
+ = m2, and thus obtain

p1 = 0, p2 = 0, p+ = p−, p0 = 2p+ = m (10.14)

When written in terms of contravariant vectors with pµ = gµνpν this condition takes the form

p0 = p− = m. (10.15)

Thus in the instant-time rest frame the eigenvalues of P 0(IT ) and P−(LF ) coincide. In this sense then

instant-time and light-front Hamiltonians are equivalent.

Having now established the equivalence of commutators and the equivalence of Hamiltonian operators, we now

proceed to establish the same equivalence for both free and interacting instant-time and light-front Green’s

functions.
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11 EQUIVALENCE OF INSTANT-TIME AND LIGHT-FRONT PROPAGATORS AND

TADPOLES

Construct tadpole as xµ → 0 limit of propagator (not two-point function), i.e., use xµ as a

regulator.

D(xµ) = −i〈Ω|[θ(σ)φ(x)φ(0) + θ(−σ)φ(0)φ(x)]|Ω〉 =
1

(2π)4

∫
d4p

e−ip·x

p2 −m2 + iε
, σ = x0 or σ = x+.(11.1)

D(xµ = 0) = −i〈Ω|φ(0)φ(0)|Ω〉 =
1

(2π)4

∫
d4p

1

p2 −m2 + iε
. (11.2)

D(xµ, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

e−i(p0x
0+p1x

1+p2x
2+p3x

3)

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ, front) =
2

(2π)4

∫
dp+dp1dp2dp−

e−i(p+x
++p1x

1+p2x
2+p−x−)

4p+p− − (p1)2 − (p2)2 −m2 + iε
,

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
. (11.3)

For all of these Feynman contours there are only poles, except D(xµ = 0, front), for which

the circle at infinity in the complex p+ plane is not suppressed.
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12 THE NON-VACUUM INSTANT-TIME CASE

In the instant-time case the Feynman integral is readily performed since it is just pole terms and for the

forward D(x0 > 0, instant) = −i〈ΩI |θ(x0)φ(x0, x1, x2, x3)φ(0)|ΩI〉 we obtain

D(x0 > 0, instant) = D(x0 > 0, instant, pole)

= − i

(2π)3

∫ ∞
−∞

d3p

2Ep
e−iEpx

0+i~p·~x =
1

8π

(
m2

x2

)1/2

H
(2)
1 (m(x2)1/2). (12.1)

Insertion of the Fock space expansion for φ(x0, x1, x2, x3) yields

D(x0 > 0, instant, Fock) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep
e−iEpx

0+i~p·~x. (12.2)

We recognize (12.2) as (12.1), to thus establish the equivalence of the instant-time Feynman

and Fock space prescriptions.
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13 THE NON-VACUUM LIGHT-FRONT CASE

In the light-front case poles in the complex p+ plane occur at

p+ = E ′p −
iε

4p−
, E ′p =

(p1)2 + (p2)2 + m2

4p−
. (13.1)

Poles with p− ≥ 0+ thus all lie below the real p+ axis and have positive E ′p, while poles with p− ≤ 0− all lie
above the real p+ axis and have negative E ′p. For x+ > 0, closing the p+ contour below the real axis (which for
x+ > 0 suppresses the circle at infinity contribution) then restricts to poles with E ′p > 0, p− ≥ 0+. However,
in order to evaluate the pole terms one has to deal with the fact that the pole at p− = 0+ has E ′p =∞.
Momentarily exclude the region around p− = 0, and thus only consider poles below the real p+ axis that have p− ≥ δ.
Evaluating the contour integral in the lower half of the complex p+ plane thus gives

D(x+ > 0, front, pole) = − 2i

(2π)3

∫ ∞
δ

dp−
4p−

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2e
−i(E′px++p−x−+p1x1+p2x2)−εx+/4p−

= − 1

4π2x+

∫ ∞
δ

dp−e
−ip−x−+i[(x1)2+(x2)2]p−/x

+−im2x+/4p−−εx+/4p−

= − 1

4π2x+

∫ ∞
δ

dp−e
−ip−x2/x+−im2x+/4p−−εx+/4p−. (13.2)

If we now set α = x+/4p−, we obtain

D(x+ > 0, front, pole) = − 1

16π2

∫ x+/4δ

0

dα

α2
e−ix

2/4α−iαm2−αε. (13.3)

In (13.3) we can now take the limit δ → 0, x+/4δ → ∞ without encountering any ambiguity AS LONG AS x+ IS
NONZERO, and with x+ > 0 thus obtain

D(x+ > 0, front, pole) = − 1

16π2

∫ ∞
0

dα

α2
e−ix

2/4α−iαm2−αε =
1

8π

(
m2

x2

)1/2

H
(2)
1 (m(x2)1/2). (13.4)
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Comparing with (12.1) we see that D(x+ > 0, instant) and D(x+ > 0, front) are equal.
Inserting the Fock space expansion for φ(x+, x1, x2, x−) gives precisely the same result, and thus we obtain

D(x0 > 0, instant) = D(x0 > 0, instant, pole) = D(x0 > 0, instant,Fock)

= D(x+ > 0, front) = D(x+ > 0, front, pole) = D(x+ > 0, front,Fock). (13.5)

General rule: the Feynman and Fock space prescriptions will coincide whenever the only contribution to

Feynman contours is poles. Thus for x+ > 0 the Feynman and Light-Front Hamiltonian approaches coincide.

But what about x+ = 0?
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14 THE INSTANT-TIME VACUUM CASE

In the instant-time case one can readily set xµ to zero, and obtain

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε

= D(xµ = 0, instant, pole) = D(xµ = 0, instant,Fock)

= − i

(2π)3

∫ ∞
−∞

d3p

2Ep
= − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (14.1)
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15 THE LIGHT-FRONT VACUUM CASE - POLE AND FOCK SPACE CONTRIBU-

TIONS

In the light-front case we set xµ to zero and evaluate

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
. (15.1)

Again we need to take care of the p− = 0 region, so we again introduce the δ cutoff at small p−. On closing below the real
p+ axis the only poles are those with p− > 0, and for them we obtain a pole contribution of the form

D(xµ = 0, front, pole) = − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
δ

dp−
4p−

. (15.2)

Then on setting p− = 1/α, we are able to let p− go to zero, to obtain

D(xµ = 0, front, pole) = − i

16π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 1/δ

0

dα

α
= − i

16π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dα

α
. (15.3)

For the Fock space prescription we set xµ = 0 in (2.2), viz.

φ(0) =
2

(2π)3/2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
(4p−)1/2

[ap + a†p], (15.4)

and on inserting φ(0) into −i〈Ω|φ(0)φ(0)]|Ω〉 obtain

D(xµ = 0, front,Fock) = − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

= D(xµ = 0, front, pole). (15.5)

Comparing with (15.2) we again see the equivalence of the pole and Fock space prescriptions.
However, something is wrong. We are evaluating the m-dependent D(xµ = 0, front) as given in (15.1), and yet we obtain

an answer that does not depend on m at all. What went wrong is that we left out the circle at infinity.
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16 THE LIGHT-FRONT VACUUM CASE - CIRCLE AT INFINITY CONTRIBUTION

To evaluate the circle at infinity contribution we introduce the regulator

1

(A+ iε)
= −i

∫ ∞
0

dαeiα(A+iε). (16.1)

For p− > 0 the regulator converges on the UPPER half circle, and there are no poles at all. We obtain

D(xµ = 0, p− > 0, front, upper circle)

=
2i

(2π)4

∫ ∞
0

dp−

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ π

0

iReiθdθ

∫ ∞
0

dαeiα(4p−Re
iθ−(p1)2−(p2)2−m2+iε)

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε
∫ π

0

iReiθdθe4iαp−Re
iθ

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε (e
4iαp−Re

iθ − e−4iαp−Reiθ)
4iαp−

∣∣∣∣π
0

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε (e
−4iαp−R − e4iαp−R)

4iαp−

= − 1

4π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε sin(4αp−R)

4αp−
. (16.2)

Then, on letting R go to infinity we obtain

D(xµ = 0, p− > 0, front, upper circle) = − 1

4π2

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αεδ(4αp−)

= − 1

8π2

∫ ∞
−∞

dp−

∫ ∞
0

dα

α
e−iαm

2−αεδ(4αp−) = − 1

32π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (16.3)

We thus establish the centrality of p− = 0 modes.

Similarly, for p− < 0 close on the LOWER half circle, and again there are no poles. We obtain

D(xµ = 0, p− > 0, front, upper circle) = D(xµ = 0, p− < 0, front, lower circle), (16.4)
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and thus

D(xµ = 0, front) = D(xµ = 0, p− > 0, front, upper circle) +D(xµ = 0, p− < 0, front, lower circle)

= − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (16.5)

Now not only is there now an m dependence, we obtain

D(xµ = 0, front) = D(xµ = 0, instant). (16.6)

So again, light-front quantization is instant-time quantization. And even though there is only a circle
at infinity contribution in the light front case, it is this circle at infinity that enables the light-front and
instant-time vacuum graphs to be the same.
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17 RECONCILING THE FOCK SPACE AND FEYNMAN CALCULATIONS

To avoid p− = 0 difficulties we use the regulator on the real p+ axis, and set

D(xµ, front, regulator)

= − 2i

(2π)4

∫ ∞
−∞

dp+

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp−e
−i(p+x++p−x−+p1x1+p2x2)

∫ ∞
0

dαeiα(4p+p−−(p1)
2−(p2)2−m2+iε)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−e
−i(p−x−+p1x1+p2x2)

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp− − x+)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 0

−∞
dp−e

−i(p−x−+p1x1+p2x2)
∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp− − x+). (17.1)

On changing the signs of p−, p1 and p2 in the last integral and setting F 2
p equal to the positive (p1)

2 + (p2)
2 +m2 we obtain

D(xµ, front, regulator)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

e−i(p−x
−+p1x

1+p2x
2)

∫ ∞
0

dαeix
+(−F 2

p+iε)/4p−δ(α− x+/4p−)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

ei(p−x
−+p1x

1+p2x
2)

∫ ∞
0

dαeix
+(F 2

p−iε)/4p−δ(α + x+/4p−)

= −2iθ(x+)

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

e−i(F
2
p x

+/4p−+p−x
−+p1x

1+p2x
2+ix+ε/4p−)

−2iθ(−x+)

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

ei(F
2
p x

+/4p−+p−x
−+p1x

1+p2x
2−ix+ε/4p−), (17.2)

and note that the structure of (17.2) is such that for x+ > 0 (forward in time) one only has positive energy propaga-
tion, while for x+ < 0 (backward in time) one only has negative energy propagation. With the insertion into D(xµ) =
−i〈Ω|[θ(x+)φ(x)φ(0) + θ(−x+)φ(0)φ(x)]|Ω〉 of the Fock space expansion for φ(xµ) given in (2.2) precisely leading to (17.2),
we recognize (17.2) as the xµ 6= 0 D(xµ, front,Fock).
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Now if we set xµ = 0 in (17.2) we would appear to obtain the m-independent D(xµ = 0, front,Fock) given in (15.5).
However, we cannot take the x+ → 0 limit since the quantity x+/4p− is undefined if p− is zero, and p− = 0 is included in
the integration range. Hence, just as discussed in regard to (13.3), the limit is singular.

To obtain a limit that is not singular we note that we can set xµ to zero in (17.1) as there the limit is well-defined, and
this leads to

D(xµ = 0, front, regulator)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp−)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 0

−∞
dp−

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp−)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp−

∫ ∞
0

dα

4α
eiα(−(p1)

2−(p2)2−m2+iε)δ(p−), (17.3)

and again see the centrality of p− = 0 modes. If we do the momentum integrations we obtain the m-dependent

D(xµ = 0, front, regulator) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (17.4)

We recognize (17.4) as being of the same form as the m-dependent D(xµ = 0, front) given in (16.5). We thus have to
conclude that the limit xµ → 0 of (17.2) is not (15.5) but is (17.4) instead, and that

D(xµ = 0, front) = D(xµ = 0, instant) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (17.5)

Setting p− = 0 and then x+ = 0 is not the same as setting x+ = 0 and then p− = 0.

Thus because of singularities we first have to point split, and when we do so we find that it is the m-dependent
(17.4) that is the correct value for the light-front vacuum graph. And it is equal to the instant-time vacuum
graph.
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18 INFINITE MOMENTUM FRAME CONSIDERATIONS

Under a Lorentz boost with velocity u in the 3-direction the contravariant and covariant components of a

general four-vector Aµ transform as

A0 → A0 + uA3

(1− u2)1/2
, A3 → A3 + uA0

(1− u2)1/2
, A0 →

A0 − uA3

(1− u2)1/2
, A3 →

A3 − uA0

(1− u2)1/2
. (18.1)

If we set (1− u) = ε2/2, then with ε small, to leading order we obtain

A0 → A0 + A3

ε
+ O(ε), A3 → A3 + A0

ε
+ O(ε), A0 →

A0 − A3

ε
+ O(ε), A3 →

A3 − A0

ε
+ O(ε),

(A0)2 − (A3)2 = A+A− → A+A−, (18.2)

where A± = A0 ± A3. This leads to

p3 → p+

ε
=

2p−
ε
, Ep →

2p−
ε
,

dp3

Ep
→ dp−

p−
, (18.3)

where Ep = [(p3)2 + (p1)2 + (p2)2 + m])1/2.

On transforming to the infinite momentum frame we obtain

D(xµ = 0, instant,Fock) = D(xµ = 0, instant, pole) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep

→ − i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
2p−

= D(xµ = 0, front,Fock) = D(xµ = 0, front, pole). (18.4)
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D(xµ = 0, instant, pole) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep

→ − i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
2p−

= D(xµ = 0, front, pole) (18.5)

and as such, the infinite momentum frame is doing what it is supposed to do, namely it is transforming an

instant-time on-shell graph into a light-front on-shell graph. However, this is not the correct answer as it does

not depend on m. As we showed in (17.5) the correct answer is the m-dependent

D(xµ = 0, front) = D(xµ = 0, instant) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (18.6)

Thus in this respect not only is the on-shell prescription failing for light-front vacuum graphs, so is the infinite

momentum frame prescription.

We thus have two puzzles: How could the limit in (18.5) lose its m dependence to begin with if it is a Lorentz

transformation. And second how do we recover the m dependence anyway.

For the first puzzle we note that since the mass-dependent quantity dp3/2Ep is Lorentz invariant, under a

Lorentz transformation with a velocity less than the velocity of light it must transform into itself and thus

must remain mass dependent. However, in the infinite momentum frame it transforms into a quantity dp−/2p−
that is mass independent. This is because velocity less than the velocity of light and velocity equal to the velocity

of light are inequivalent, since an observer that is able to travel at less than the velocity of light is not able to

travel at the velocity of light. Lorentz transformations at the velocity of light are different than those at less

than the velocity of light, and at the velocity of light observers (viz. observers on the light cone) can lose any

trace of mass.
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The resolution to the second puzzle lies in the contribution of the circle at infinity to the Feynman contour. In

the instant-time case the integral ∫
dp0dp3

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 + iε
(18.7)

is suppressed on the circle at infinity in the complex p0 plane (p3 being finite), and only poles contribute.

However, when one goes to the infinite momentum frame in the instant-time case dp3 also becomes infinite

(p3 = mv/(1 − v2)1/2) and the circle contribution is no longer suppressed. Specifically, on the instant-time

circle at infinity, the term that is of relevance behaves as∫
Rieiθdθdp3

R2e2iθ − (p3)2
, (18.8)

and on setting ε = 1/R in the infinite momentum frame limit, as per (18.3) the circle term behaves as the

unsuppressed ∫
RieiθdθRdp−
R2e2iθ −R2p2

−
=

∫
ieiθdθdp−
e2iθ − p2

−
. (18.9)

Thus in the instant-time case one cannot ignore the circle at infinity in the infinite momentum frame even

though one can ignore it for observers moving with finite momentum. Consequently, the initial reduction from

the instant-time Feynman diagram to the on-shell instant-time Hamiltonian prescription is not valid in the

infinite momentum frame, and one has to do the full four-dimensional Feynman contour integral instead.
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19 INTERACTIONS

Two c-number approaches: path integrals and Feynman diagrams. Path integrals involve
integrals of classical variables in coordinate space. Feynman diagrams involve integrals of
classical variables in momentum space. For both we can transform from instant-time to
light-front coordinate and momentum variables using general coordinate transformations.
Thus if underlying theory and its renormalization procedure are general coordinate invariant
the equivalence of instant-time and light-front Green’s functions is established.

However, there is a caveat. For Feynman diagrams we need to start out with fully covariant
four-dimensional contour integrals if we want to establish the equivalence. We can obscure
the equivalence if we do the pole integrations in the complex frequency plane first, as then we
would have on-shell three-dimensional integrals. Also we would then have a zero momentum
mode problem. We can avoid this by not doing the frequency integrations until after we
have introduced the exponential regulators.

That the zero mode problem must be avoidable is apparent from the path integral approach
as it is purely in coordinate space and involves no zero momentum modes at all.
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20 THE MORAL OF THE STORY

When we let p− → 0 we are letting p+ = [(p1)
2 + (p2)

2 +m2]/4p− →∞.

However x+ is the conjugate of p+, and thus as p+ →∞, x+ → 0.

The p− → 0 and the x+ → 0 limits are thus intertwined.

If we stay away from x+ = 0 and restrict to x+ > 0 and thus p− > 0 as in the Light-Front Hamiltonian approach, there is
no difficulty as there are only poles and nothing is singular, with the forward scattering on-shell Light-Front Hamiltonian
approach thus being validated.

However this does become a concern for tadpole graphs as they have x+ = 0, since we need both θ(x+) and θ(−x+)
time orderings in the limit, with 〈Ω|[θ(x+)φ(x)φ(0) + θ(−x+)φ(0)φ(x)]|Ω〉 → 〈Ω|[θ(0+)φ(0)φ(0) + θ(0−)φ(0)φ(0)]|Ω〉 =
〈Ω|φ(0)φ(0)|Ω〉.
If we compare

D(xµ, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

e−i(p0x
0+p1x

1+p2x
2+p3x

3)

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ, front) =
2

(2π)4

∫
dp+dp1dp2dp−

e−i(p+x
++p1x

1+p2x
2+p−x

−)

4p+p− − (p1)2 − (p2)2 −m2 + iε
, (20.1)

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
, (20.2)

we can transform each instant-time graph into each corresponding light-front graph by a change of variable. Thus they must
be equal. However, that does not mean that pole equals pole or that circle equals circle, only that pole plus circle equals
pole plus circle, as it is only on the full closed contour that the integrals are equal.

The transformation x0 → x0 + x3, x3 → x0 − x3 is a spacetime-dependent general coordinate transformation (not a Lorentz
transformation), and thus by the general coordinate invariance of the fundamental interactions it must be the case that

LIGHT-FRONT QUANTIZATION IS INSTANT-TIME QUANTIZATION, JUST ONE THEORY.
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