Frame-independent spatial coordinate \tilde{z} : Implications for light-front wave functions, deep inelastic scattering, light-front holography, and lattice QCD calculations

Gerald A. Miller, UW, Stanley J. Brodsky, SLAC Motivation 1-curiosity

Three dimensional structure of proton presented in terms of transverse spatial coordinates but longitudinal momentum coordinate x What about 3 spatial dimensions?

Everyone knows the Bjorken variable x.

Parton model x: ratio of quark k^+ to proton P^+ momentum $x = \frac{k^+}{P^+}$

What is the longitudinal spatial variable canonically conjugate to x? $0 \le x \le 1$ compact range, but k^+ goes up to P^+

The variable is

$$\tilde{z} = x^- P^+$$

 $x^{\pm} = \frac{1}{\sqrt{2}} (x^0 \pm x^3)$

Similar thoughts - Glazek, Hoyer,....

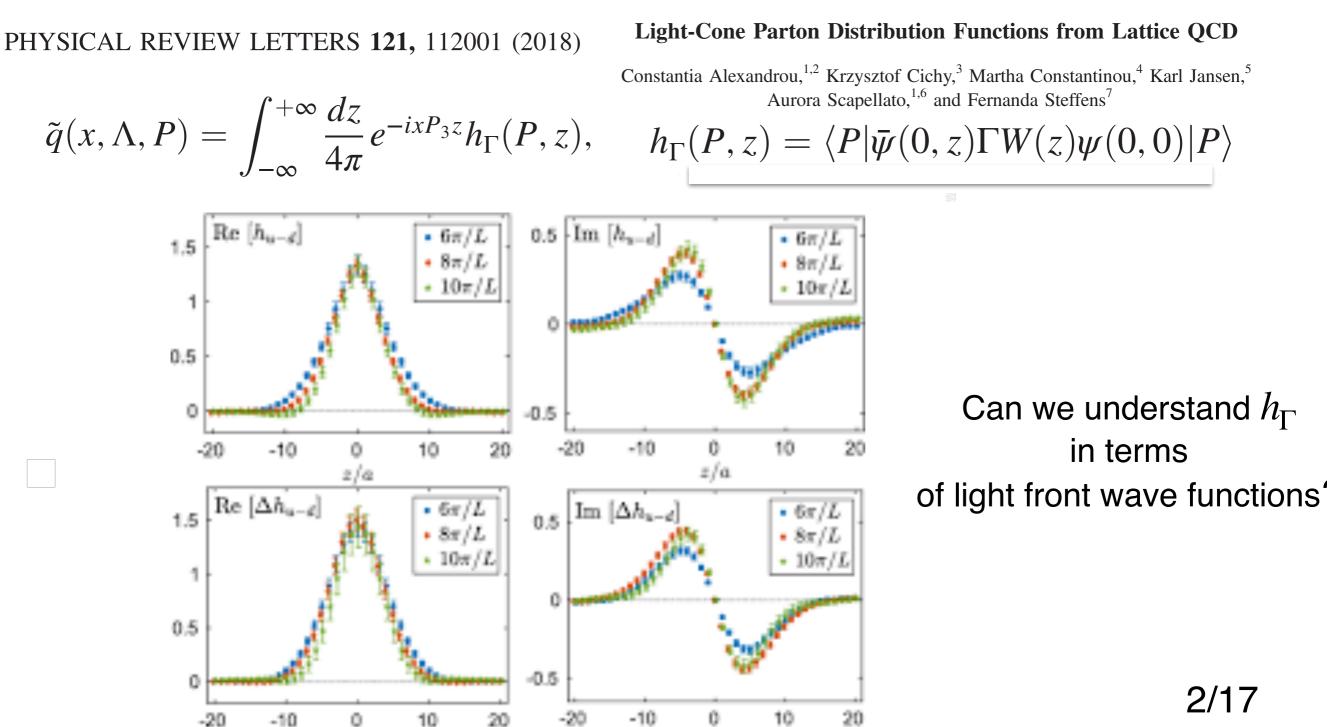
Motivation 2: Lattice calculations of q(x)

Old way compute a few moments and reconstruct

Now quasi-pdfs in longitudinal coordinate space •

Ō

z/a



z/a

Motivation 2: Lattice calculations of q(x)

Old way compute a few moments and reconstruct

Now quasi-pdfs in longitudinal coordinate space

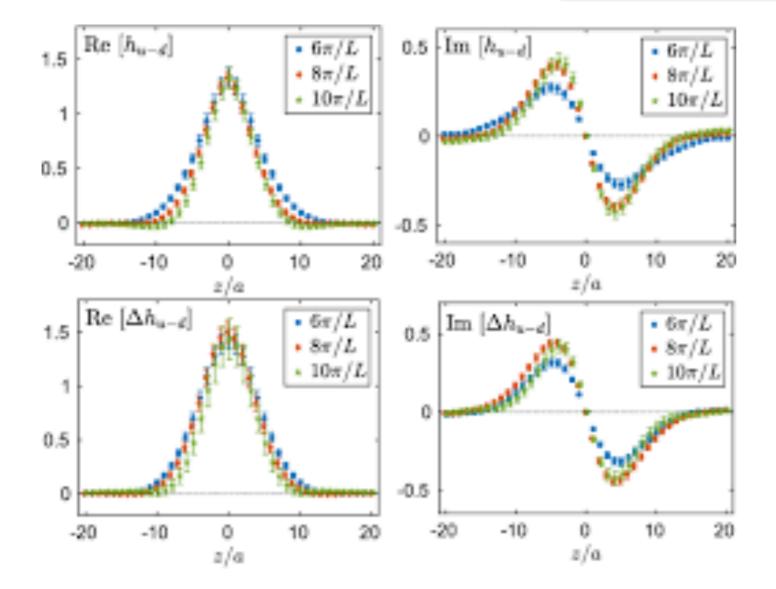
PHYSICAL REVIEW LETTERS 121, 112001 (2018)

$$\tilde{q}(x,\Lambda,P) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-ixP_3 z} h_{\Gamma}(P,z)$$

Light-Cone Parton Distribution Functions from Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou,⁴ Karl Jansen,⁵ Aurora Scapellato,^{1,6} and Fernanda Steffens⁷

$$h_{\Gamma}(P,z) = \langle P | \bar{\psi}(0,z) \Gamma W(z) \psi(0,0) | P \rangle$$



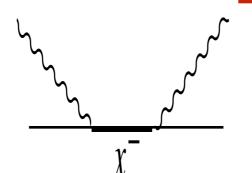
Can we relate z to light front wave functions?

Can we understand h_{Γ} in terms of light front wave functions

2/17

Quark distributions & coordinate space

$$F_q(X) = \frac{1}{2} \int \frac{dx^-}{2\pi} e^{iXP^+x^-} \langle P | \overline{\psi}_+(-\frac{x^-}{2})\gamma^+\psi_+(\frac{x^-}{2}) | P \rangle,$$



Recent lattice calculations compute the matrix element, then Fourier transform to get distributions

Insert complete set of states between the field operators matrix elements are light-front wave functions $q_n(x) = \int \frac{d^2k}{(2\pi)^2} |\psi_n(x, \mathbf{k})|^2 \qquad \begin{array}{c} \text{Contribution of Fock} \\ \text{space component (n) to} \\ F(X) \end{array}$

There has been much focus on coordinate-space versions -GPDs, in transverse coordinate space Burkardt

Longitudinal canonical variable??

 $x = \frac{k^+}{P^+}, \quad \tilde{z} = x^- P^+$ Frame Independent

Quark distributions & coordinate space $F_q(X) = \frac{1}{2} \int \frac{dx^-}{2\pi} e^{iXP^+x^-} \langle P | \overline{\psi}_+(-\frac{x^-}{2}) \gamma^+ \psi_+(\frac{x^-}{2}) | P \rangle,$ Recent lattice calculations compute the matrix element, then Fourier transform to get distributions Insert complete set of states between the field operators matrix elements are light-front wave functions Contribution of Fock $q_n(x) = \int \frac{d^2k}{(2\pi)^2} |\psi_n(x, \mathbf{k})|^2$ space component (n) to F(X)There has been much focus on coordinate-space versions -GPDs, in transverse

coordinate space Burkardt

Longitudinal canonical variable??

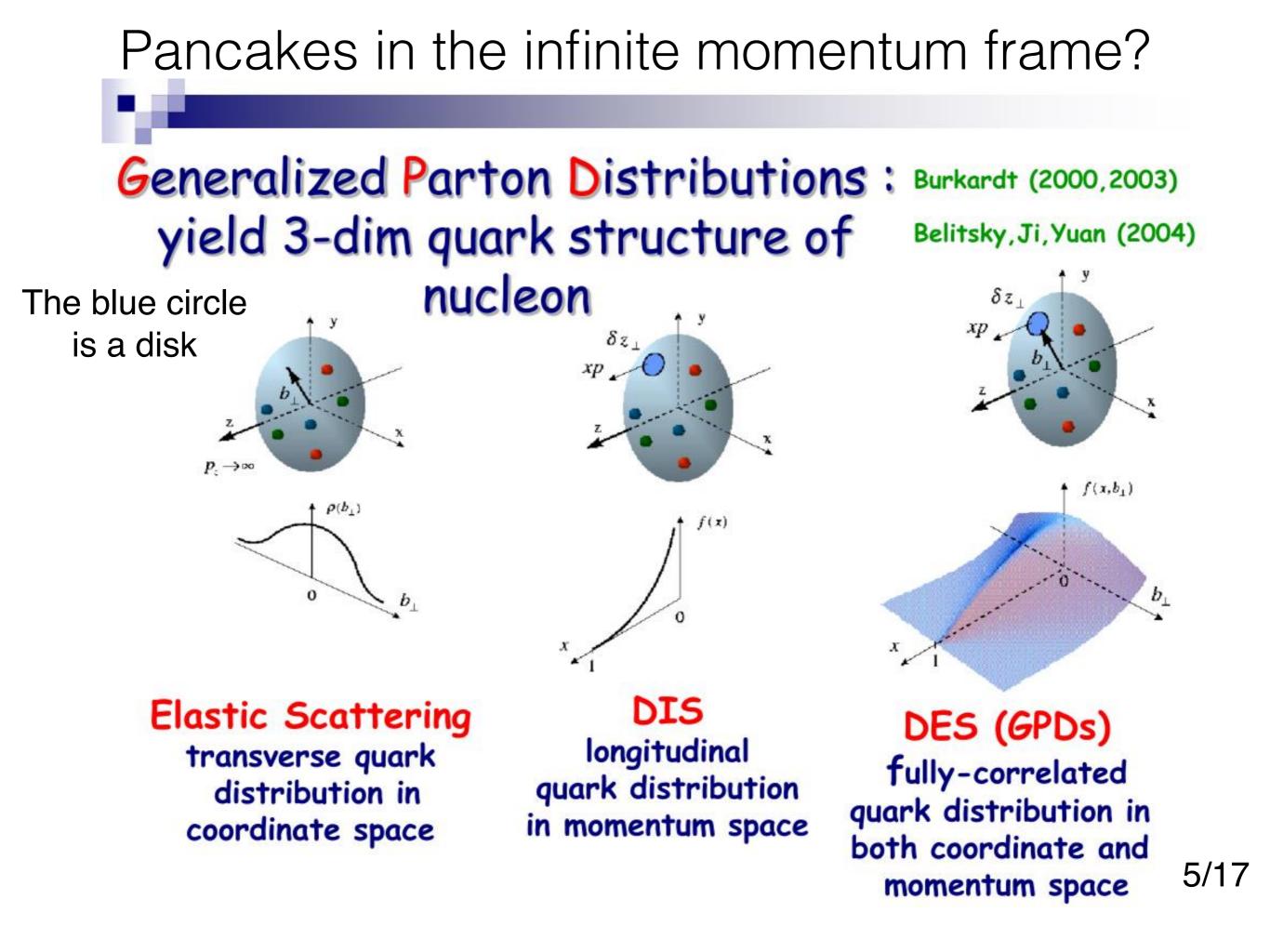
 $x = \frac{k^+}{P^+}, \quad \tilde{z} = x^- P^+$ Frame Independent

We are familiar with models of $\psi_n(x, \mathbf{k})$

Next step -get coordinate-space wave functions

Light front wave functions $x_i = k_i^+/P^+$, \mathbf{k}_i for *i*'th constituent. Relative coordinates: $x_i = k_i^+/P^+$, \mathbf{k}_i for *i*'th constituent. Canonically-conjugate spatial coordinates \tilde{z}_i , \mathbf{b}_i , $\tilde{z}_i = P^+ x_i^ \tilde{z}_i$ is for each spatial coordinate unlike so-called Ioffe time In the following use \tilde{z} instead of \tilde{z}_i for the struck quark, simplify notation $\psi_n(\tilde{z}, \mathbf{k}) = \frac{1}{\sqrt{2\pi}} \int_0^1 dx \,\psi_n(x, \mathbf{k}) e^{i\tilde{z}x}$. $\psi_n(\tilde{z}, \mathbf{b}) = \frac{1}{\sqrt{2\pi}} \int_0^1 dx \,\psi_n(x, \mathbf{b}) e^{i\tilde{z}x}$.

> Next question why \tilde{z} instead of x^- ? x^- is frame dependent



Yes, disks/pancakes

$$\psi_n(\tilde{z}, \mathbf{b}) = \frac{1}{\sqrt{2\pi}} \int_0^1 dx \, \psi_n(x, \mathbf{b}) e^{i\tilde{z}x} \, dx \, \psi_n(x, \mathbf{b}) e^{i\tilde{$$

Another choice uses
$$x^-$$
: $\chi_P^+(x^-, b) = \sqrt{\frac{P^+}{2\pi}} \int_0^1 dx \,\psi_n(x, \mathbf{b}) e^{ix^-P^+x}$.
 $\rho_{P^+}(x^-, b) = |\chi_{P^+}(x^-, b)|^2$

Densities contract to a disk in the infinite momentum frame IF function of x^- and there is a γ^+

Next- back to frame independent \tilde{z}

Yes, disks/pancakes

$$\psi_n(\tilde{z}, \mathbf{b}) = \frac{1}{\sqrt{2\pi}} \int_0^1 dx \, \psi_n(x, \mathbf{b}) e^{i\tilde{z}x} \, dx \, \psi_n(x, \mathbf{b}) e^{i\tilde{$$

Another choice uses
$$x^-$$
: $\chi_P^+(x^-, b) = \sqrt{\frac{P^+}{2\pi}} \int_0^1 dx \,\psi_n(x, \mathbf{b}) e^{ix^-P^+x}.$

Limit
$$P^+ \to \infty$$
 $\rho_{P^+}(x^-, b) = |\chi_{P^+}(x^-, b)|^2$

Densities contract to a disk in the infinite momentum frame IF function of $x^$ and there is a γ^+

Next- back to frame independent \tilde{z} .

Yes, disks/pancakes

$$\psi_n(\tilde{z}, \mathbf{b}) = \frac{1}{\sqrt{2\pi}} \int_0^1 dx \, \psi_n(x, \mathbf{b}) e^{i\tilde{z}x} dx \, \psi_$$

Another choice uses
$$x^-$$
: $\chi_P^+(x^-, b) = \sqrt{\frac{P^+}{2\pi}} \int_0^1 dx \,\psi_n(x, \mathbf{b}) e^{ix^-P^+x}.$

Limit
$$P^+ \to \infty$$
 $\rho_{P^+}(x^-, b) = |\chi_{P^+}(x^-, b)|^2$
= $\int dx |\psi_n(x, b)|^2 \delta(x^-)$

Densities contract to a disk in the infinite momentum frame IF function of $x^$ and there is a γ^+

Next- back to frame independent \tilde{z}

Quark distributions and \tilde{z} $q_n(x) = \int \frac{d^2k}{(2\pi)^2} |\psi_n(x, \mathbf{k})|^2$

Fourier transform each of the two wave functions

 $q_{n}(x) = \int \frac{d\tilde{z} d\tilde{z}'}{2\pi} \int \frac{d^{2}\mathbf{k}}{(2\pi)^{2}} \psi_{n}^{*}(\tilde{z}', \mathbf{k}) \psi_{n}(\tilde{z}, \mathbf{k}) \bar{e}^{i(\tilde{z}-\tilde{z}')x}.$ $\tilde{Z} \equiv (\tilde{z} + \tilde{z}')/2, \quad \Delta \tilde{z} = \tilde{z} - \tilde{z}'$ Integrate on \tilde{Z} $q_{n}(x) = \int_{-\infty}^{\infty} d(\Delta \tilde{z}) g_{n}(\Delta \tilde{z}, x),$ $g_{n}(\Delta \tilde{z}, x) = \frac{1}{2\pi} \int_{0}^{1} dy q_{n}(y) \cos \Delta \tilde{z}(y-x).$

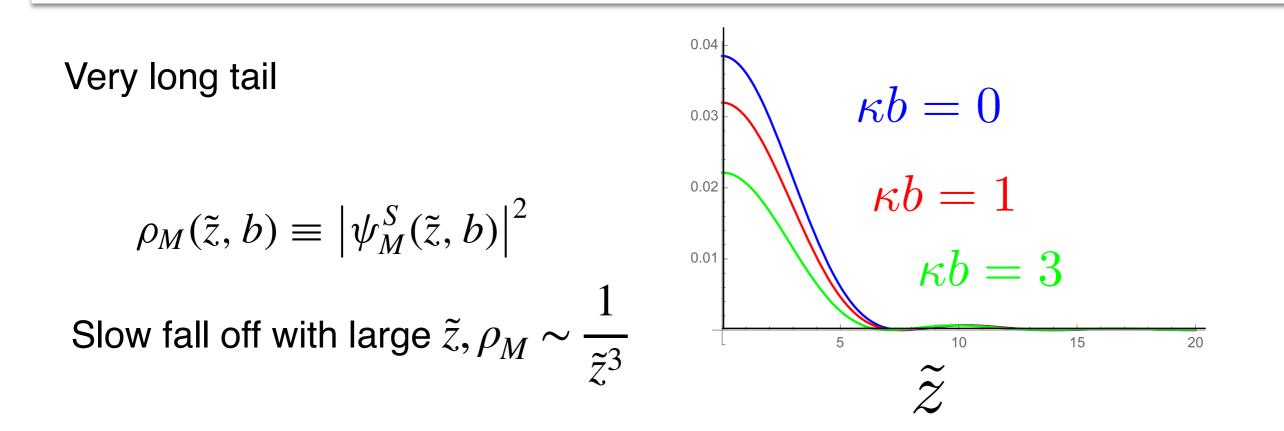
 $g_n(\Delta \tilde{z}, x)$

 $(ilde{z}, x)$ measures contribution to quark (anti-quark) distributions occurring at a separation $\Delta \tilde{Z}$

Variables $\Delta \tilde{Z}, x$ canonically related, so g_n is a longitudinal Wigner distribution

Models to understand wavefunctions 3 spatial dimensions

I. Pseudoscalar meson, massless quarks, $q\bar{q}$ LF holographic model $\psi_M(x, \mathbf{b}) = \frac{\kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{\mathbf{b}^2 \kappa^2 x(1-x)}{2}} b$ transverse dist between quark and cm Fourier transform. $\frac{\pi}{\sqrt{2\kappa}} \psi_M^S(\tilde{z}, b) \approx \frac{\pi}{4} e^{i\tilde{z}/2} e^{-b^2\kappa^2/8} \frac{J_1(\tilde{z}/2)}{\tilde{z}}$ $\tilde{z} = x^- P^+$ x-: quark spectator longitudinal distance

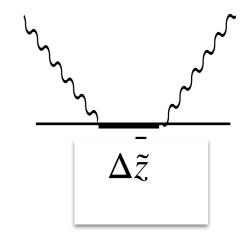


Models to understand $g(\Delta \tilde{z}, x)$

I. Pseudoscalar meson, massless quarks, $q\bar{q}$ LF holographic model $\psi_M(x,\mathbf{b}) = \frac{\kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{\mathbf{b}^2 \kappa^2 x(1-x)}{2}} b$ transverse dist between quark and cm Take Ψ_M square it, integrate over **b** to get $q_M(y)$. Use result to get g_M $g_M(\Delta \tilde{z}, x) = \frac{1}{2\pi} \left(\frac{\sin \Delta \tilde{z}(1-x) + \sin \Delta \tilde{z}x}{\Delta \tilde{z}} \right)$ $\Delta \tilde{z}$ 1.0 Very long tail 0.8 x=0.1 $g_M(\Delta \tilde{z}, x)$ 0.6 0.4 Simple wf, no Regge behavior 0.2 Absorption-emission distance can be large -0.2 In lab frame, if $\Delta \tilde{z} = 16$, $\Delta x^- \approx 5$ fm $\Delta \tilde{z}$

Intermediate summary

- Using the frame-independent variable \tilde{z} gives a way to study light front wave functions in three dimensions
- Simplest two particle wave function has a large spatial longitudinal extent
- Deep inelastic scattering may occur at large values of $\Delta \tilde{z}$
- Will such effects occur in your model?
- $q_M(x) = 1!$ need to have more realistic wave function



Remainder of talk is concerned with one different model arXiv:1801.09154 PRL 120 (2018) 18, 182001

Guy F. de Téramond¹, Tianbo Liu^{2,3}, Raza Sabbir Sufian², Hans Günter Dosch⁴, Stanley J. Brodsky⁵, Alexandre Deur² arXiv:1801.09154

GPD Model incorporates Regge behavior small x, inclusive counting rules high x precise descriptions of nucleon and pion q(x)

 $\tau = 2, 3, 4 =$ number of constituents in Fock-space wavefunction

$$q_{\tau}(x) = \frac{1}{N_{\tau}} [1 - w(x)]^{\tau - 2} w(x)^{-(1/2)} w'(x), \qquad (18)$$

$$f(x) = \frac{1}{4\lambda} \left[(1-x) \ln\left(\frac{1}{x}\right) + a(1-x)^2 \right],$$
 (19)

and $w(x) = x^{1-x}e^{-a(1-x)^2}$.

The value of the universal scale λ is fixed from the ρ mass: $\sqrt{\lambda} = \kappa = m_{\rho}/\sqrt{2} = 0.548$ GeV [37,39]. The flavorindependent parameter $a = 0.531 \pm 0.037$. The *u* and *d* quark distributions of the proton are given by a linear superposition of q_3 and q_4 whereas those of the pion are obtained from q_2 and q_4 .

GPD
$$H_{\tau}(x, t) = q_{\tau}(x)e^{tf(x)}$$

Guy F. de Téramond¹, Tianbo Liu^{2,3}, Raza Sabbir Sufian², Hans Günter Dosch⁴, Stanley J. Brodsky⁵, Alexandre Deur² **PRL 120 (2018) 18, 182001 arXiv:1801.09154**

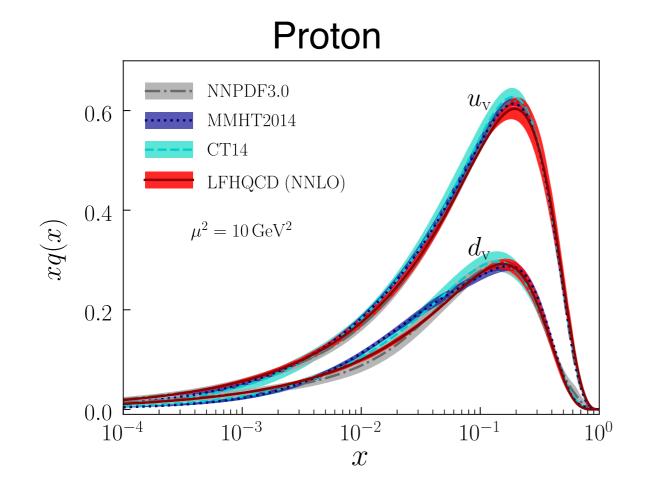
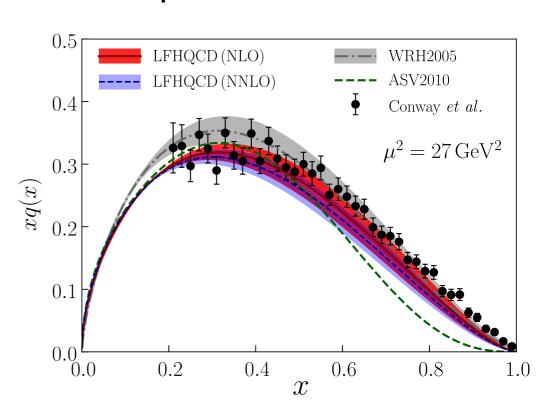


FIG. 1. Comparison for xq(x) in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_0 = 1.06\pm0.15$ GeV.



pion

FIG. 4. Comparison for xq(x) in the pion from LFHQCD (red band) with the NLO fits [82,83] (gray band and green curve) and the LO extraction [84]. NNLO results are also included (light blue band). LFHQCD results are evolved from the initial scale $\mu_0 = 1.1\pm0.2$ GeV at NLO and the initial scale $\mu_0 = 1.06\pm0.15$ GeV at NNLO.

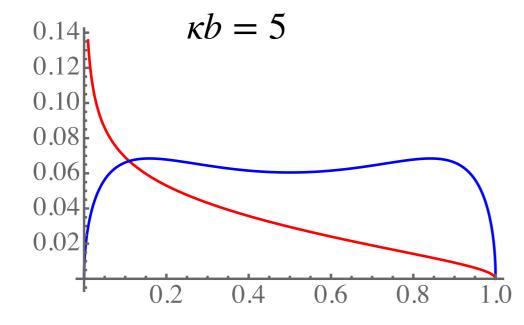
Universality of Generalized Parton Distributions in Light-Front Holographic QCD Guy F. de Téramond¹, Tianbo Liu^{2,3}, Raza Sabbir Sufian², Hans Günter Dosch⁴, Stanley J. Brodsky⁵, Alexandre Deur² PRL 120 (2018) 18, 182001

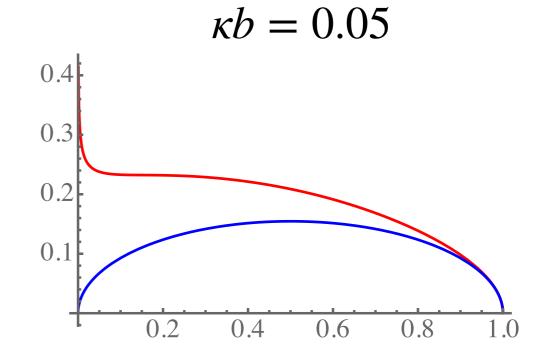
 $\tau = 2, 3, 4 =$ number of constituents in Fock-space wavefunction

Light front wave function $\tau = 2$

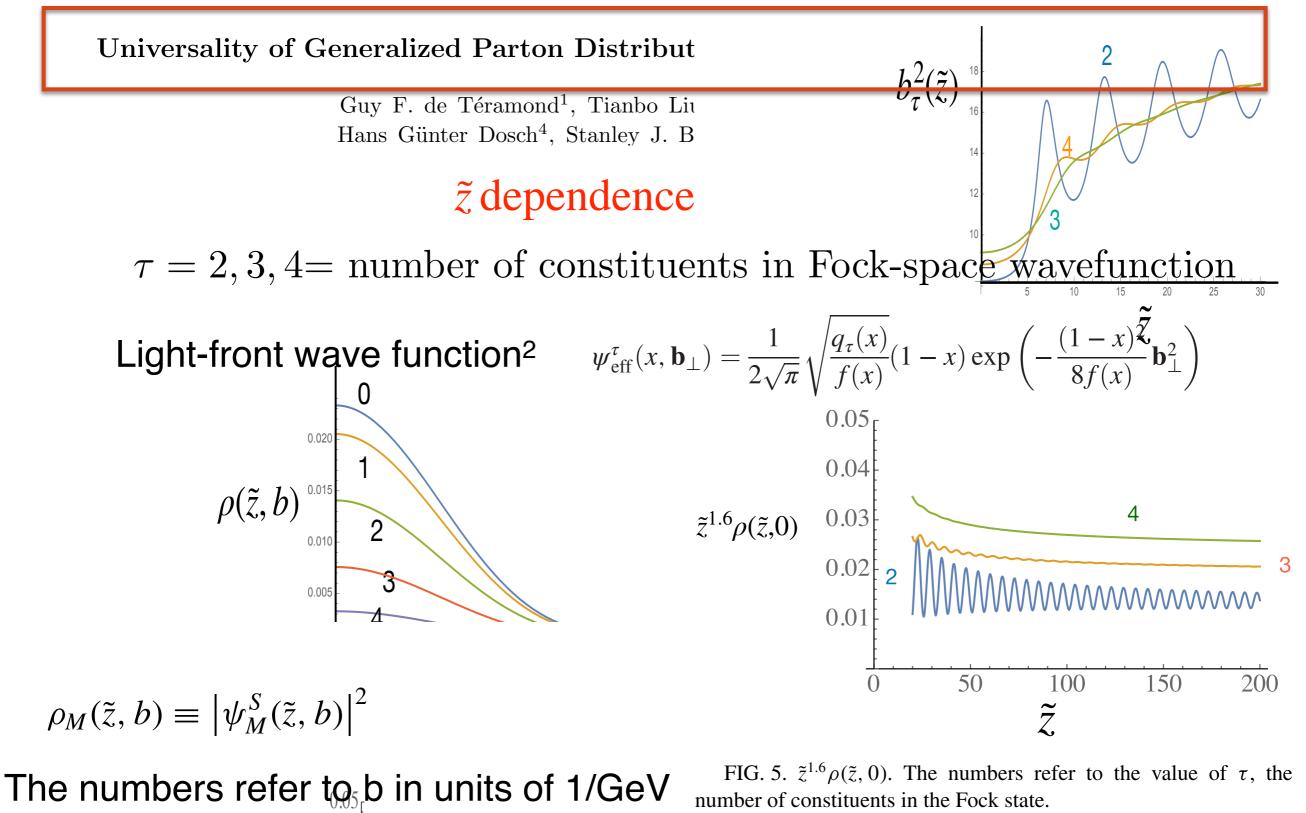
First HLFQCD wave function

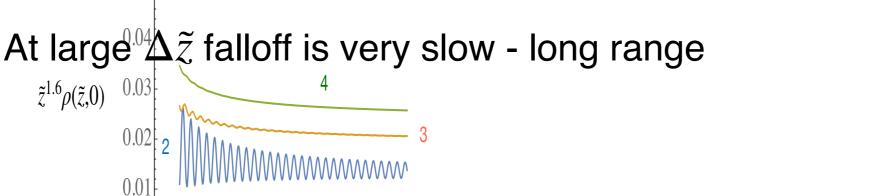
$$\psi_M(x, \mathbf{b}) = \frac{\kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-[\mathbf{b}^2 \kappa^2 x(1-x)]/2}$$



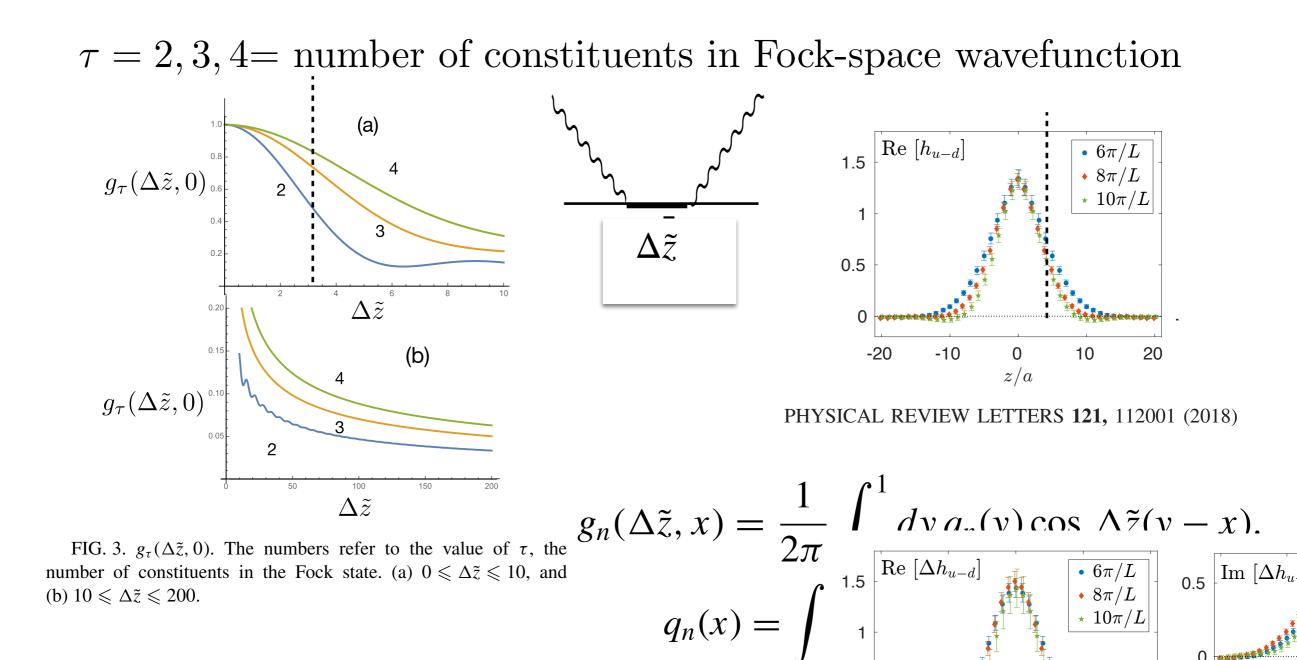


13/17





Guy F. de Téramond¹, Tianbo Liu^{2,3}, Raza Sabbir Sufian², Hans Günter Dosch⁴, Stanley J. Brodsky⁵, Alexandre Deur²



0.5

-20

-10

0

z/a

10

0

-0.5

-20

-10

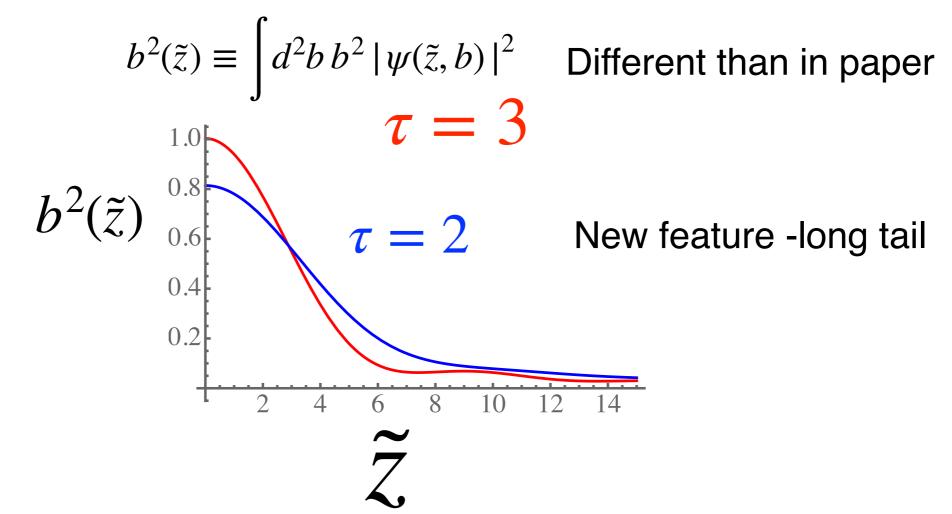
20

Significant contributions at large $\Delta \tilde{z}$

Guy F. de Téramond¹, Tianbo Liu^{2,3}, Raza Sabbir Sufian², Hans Günter Dosch⁴, Stanley J. Brodsky⁵, Alexandre Deur²

Average value of b^2

 $\tau=2,3,4=$ number of constituents in Fock-space wavefunction



Summary

- Frame-independent longitudinal spatial variable, canonically conjugate to x introduced $\tilde{z} = x^- P^+$
- \cdot Square of wave functions have long tail in $\,\,\widetilde{z}\,$
- Distance between absorption and emission of virtual photons in DIS can be very large, especially so at small x
- The function g($\Delta \tilde{z}$, x) may serve as a bridge between light front wave functions and lattice QCD calculations of GPDs
- What is the \tilde{z} dependence of your wave functions?