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Three dimensional structure of proton presented in terms of transverse spatial 
coordinates but  longitudinal momentum coordinate x 

What about 3 spatial dimensions?
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A general procedure for obtaining frame-independent three-dimensional light-front coordinate-space wave
functions is introduced. The third spatial coordinate z̃ is the boost and Lorentz frame-independent coordinate
conjugate to the light-front momentum coordinate x = k+

P+ which appears in the momentum-space light-front
wave functions underlying generalized parton distributions, structure functions, distribution amplitudes, form
factors, and other hadronic observables. These causal light-front coordinate-space wave functions are used
to derive a general expression for the quark distribution function of hadrons as an integral over the frame-
independent longitudinal distance (the Ioffe time) between virtual-photon absorption and emission appearing in
the forward virtual photon-hadron Compton scattering amplitude. Specific examples using models derived from
light-front holographic QCD show that the spatial extent of the proton eigenfunction in the longitudinal direction
can have a very large extent in z̃.
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Introduction. Much recent effort has been devoted to
understanding and measuring the generalized parton distri-
butions [1–3] which encode the fundamental structure of
hadrons in terms of the three-dimensional momentum-space
coordinates of their quark and gluon constituents. Recent
lattice calculations of quasi-parton distribution functions (-
pdfs) evaluate a Fourier transform of a matrix element which
depends on the spatial separation between the points of
virtual-photon absorption and emission that appears in the
virtual photon-proton Compton scattering amplitude. It is,
therefore, of considerable interest to understand the spatial
longitudinal dependence of the virtual Compton amplitude
from a causal frame-independent perspective. In this Rapid
Communication, we show that the frame-independent eigen-
solutions of the Quantum Chromodynamics (QCD) light-front
(LF) Hamiltonian that underly hadronic observables can be
expressed in terms of a longitudinal spatial coordinate z̃
that is simply related to the spatial separation between a
struck quark and the spectators. One, thus, obtains a frame-
independent fully three-dimensional spatial description of the
hadron structure which complements analyses using the usual
transverse spatial variables [4–7].
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The light-front Fock representation. The light-front expan-
sion of any hadronic system is constructed by quantizing
QCD at fixed light-front time τ = t + z/c [8–12]. The LF
time-evolution operator P− = i d

dτ
can be derived directly

from the QCD Lagrangian. The light-front Lorentz-invariant
Hamiltonian for the composite hadrons HQCD

LF = P−P+ − P2

(P± = P0 ± Pz and boldface denotes the two-dimensional
transverse vectors) has eigenvalues M2

h, corresponding to the
mass spectrum of the color-singlet states in QCD [10].

In principle, the complete set of bound-state and scattering
eigensolutions of HQCD

LF can be obtained by solving the light-
front Heisenberg equation

HQCD
LF |ψh〉 = M2

h|ψh〉, where |ψh〉 is an expansion in mul-
tiparticle Fock eigenstates {|n〉} of the free light-front Hamil-
tonian: |ψh〉 =

∑
n ψn/h|ψh〉. The light-front wave-functions

ψn/h(xi, ki, λi ) provide a complete causal frame-independent
representation of hadrons, relating the quark and gluon de-
grees of freedom in each n-particle Fock state to the hadronic
eigenstate.

Twist-two operators and the need for a longitudinal spatial
coordinate. The quark distributions of a hadron are matrix
elements of quark operators at lightlike separation [13–16],

q(x) =
∫

dx−

4π
eixP+x−〈P|ψ

(
−x−

2

)
γ +ψ

(
x−

2

)
|P〉,

q(x) = −q(−x), (1)

where the notation (x−/2) refers to the four-vector
(x−/2, x+ = 0, x = 0); the LF helicity and flavor labels as
well as the Q2dependence are suppressed. The operator γ 0γ +
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Everyone knows the Bjorken variable x.
Parton model x: ratio of quark k+ to proton P+ momentum x = k+

P+

What is the longitudinal spatial variable canonically conjugate to x?
  compact range, but  goes up to 0 ≤ x ≤ 1 k+ P+

The variable is x± =
1

2
(x0 ± x3)

Similar thoughts - Glazek, Hoyer,…. 1/17



Motivation 2: Lattice calculations of q(x)
• Old way compute a few moments and reconstruct 

• Now quasi-pdfs in longitudinal coordinate space
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We extract parton distribution functions (PDFs) of the nucleon from lattice QCD using an ensemble of
gauge field configurations simulated with light quark masses fixed to their physical values. Theoretical and
algorithmic improvements that allow such a calculation include momentum smearing to reach large
nucleon boosts with reduced statistical errors, nonperturbative renormalization, target mass corrections,
and a novel modified matching of lattice QCD results to connect to what is extracted from experimental
measurements. We give results on the unpolarized and helicity PDFs in the modified minimal subtraction
scheme at a scale of 2 GeV and reproduce the main features of the experimentally determined quantities,
showing an overlap for a range of Bjorken-x values. This first direct nonperturbative evaluation opens a
most promising path to compute PDFs in an ab initio way on the lattice and provides a framework for
investigating also a wider class of similar quantities, which require the evaluation of hadronic matrix
elements of nonlocal operators.
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Introduction.—A key ingredient of our understanding
of fundamental particle interactions in the standard model is
the ab initio evaluation of quantum chromodynamics
(QCD) as our theory of the strong interaction between
quarks and gluons. A sound and detailed knowledge of
the theoretical predictions from QCD will shed light on
the early and the present universe and can address open
questions in nuclear and particle physics, such as the
emergence of protons and other hadrons from the under-
lying microscopic system of quarks and gluons. In addition,
such QCD predictions can provide hints for physics beyond
the standard model through precision calculations of
appropriate hadronic matrix elements.
Experimentally, a detailed insight into the most inner

structure of hadrons is provided by deep inelastic scattering
(DIS), which constitutes a most powerful approach to
probe the properties of individual quarks and gluons, such
as their momentum, spin, and angular momentum. On
the theoretical side, parton distribution functions (PDFs),

introduced in the 1960s, can be extracted from such DIS
experiments through phenomenological analyses. In this
way, detailed information about the distribution of, e.g.,
momentum and spin of quarks and gluons inside hadrons
can be obtained. More concretely, within the parton model,
unpolarized PDFs describe the probability densities of
finding a parton with a longitudinal momentum fraction
x (0 ≤ x ≤ 1) of the total momentum of the parent hadron.
In fact, a rich experimental program at major facilities,
e.g., Brookhaven National Laboratory, CERN, Deutsches
Elektronen-Synchrotron, Fermilab, JLab, and SLAC, has
provided a wealth of measurements with a corresponding
worldwide theoretical effort to interpret the results. In
addition, PDFs serve as an essential and indispensable
input for collider experiments, such as the LHC.
However, PDFs are still not precisely determined, since

one needs a rather large number of different processes and
targets and a sophisticated setup for polarized beams and
targets for the case of polarized PDFs. In general, one resorts
to fits of experimental data aided by phenomenologically
motivated Ansäätze (see, e.g., Ref. [1]). In addition, knowl-
edge of PDFs only from phenomenological fits cannot be
considered as a direct and ab initio QCD prediction, as the
analysis procedure is not unique [2]. Finally, there are also
limitations in accessing the very small x region [3–5].
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(DIS), which constitutes a most powerful approach to
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the theoretical side, parton distribution functions (PDFs),

introduced in the 1960s, can be extracted from such DIS
experiments through phenomenological analyses. In this
way, detailed information about the distribution of, e.g.,
momentum and spin of quarks and gluons inside hadrons
can be obtained. More concretely, within the parton model,
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On the other hand, PDFs are universal and process-
independent quantities and are inherently of a nonperturba-
tive nature. Hence, they would be, in principle, a very
suitable target for lattice QCD (LQCD) calculations, since
LQCD provides a well-defined theoretical framework for
computing hadronic matrix elements using directly the QCD
Lagrangian. Indeed, there have been very remarkable recent
successes of LQCD, such as the precise measurement of the
low-lying hadron spectrum including the mass splitting
between proton and neutron [6] and the decomposition of
the proton spin [7]. However, an LQCD computation of the
full x dependence of PDFs related to bilocal operators on the
light cone was thought to be impossible for a very long time.
Only the lowest moments of PDFs were until recently
computed (see, e.g., [8–12]), since these are related to
matrix elements of local operators. But, having only very
few lowest moments available is clearly insufficient to
reconstruct PDFs in a model-independent manner.
In the seminal work by X. Ji [13], a new promising

approach [14] to compute PDFswithin LQCDwas proposed.
However, applicability of this approach requires the valida-
tion of and control on a number of nontrivial steps, which
are to reach large enough nucleon boosts, nonperturbative
renormalization, target mass corrections, and a suitable
matching. In this Letter, we implement Ji’s approach and
examine for the first time all these steps and successfully
determine the unpolarized and polarized PDFs of the proton
within LQCD using an ensemble of gauge field configura-
tions simulatedwith light quarks of physical masses, which is
essential for reliable results for these quantities.
Ji’s approach to access PDFs proceeds via the computa-

tion of spatial correlation functions between two boosted
nucleon states, using nonlocal fermionic operators connected
with a finite-length Wilson line (WL). Taking the Fourier
transform of these matrix elements, it leads to the so-called
quasi-PDFs. For large nucleon momenta, contact with light-
cone PDFs is reestablished via a matching procedure
[19–23]. This approach has been explored in LQCD with
promising first results [24–27]. Many aspects of extracting
light-cone PDFs from quasi-PDFs have improved recently.
These include investigations of renormalizability [28,29],
development of a renormalization scheme for lattice WL
operators [30], refining the matching procedure [21–23], and
target mass corrections [26], which settled initial reservations
on the reliability of the quasi-PDF approach. Other related
approaches were also proposed and tested [31–35].
Quasi-PDFs.—The Minkowski definition of PDFs

within a hadron can be derived from the operator product
expansion of hadronic DIS and is light-cone dominated,
which makes it impossible to evaluate on a Euclidean
lattice. Quasi-PDFs, on the other hand, can be computed in
LQCD. They are given by

q̃ðx;Λ; PÞ ¼
Z

þ∞

−∞

dz
4π

e−ixP3zhΓðP; zÞ; ð1Þ

where hΓðP; zÞ ¼ hPjψ̄ð0; zÞΓWðzÞψð0; 0ÞjPi, Λ ∼ 1=a is
a UV cutoff, jPi is the proton state with finite momentum
P, whose spatial components are nonzero only in the
direction of the WL [P ¼ ðP0; 0; 0; P3Þ]. z is the length
of the WL between quark fields [WðzÞ], which is taken
in a purely spatial direction instead of the þ direction
on the light cone. The Dirac structure Γ defines the type
of PDF (Γ ¼ γμ—unpolarized, Γ ¼ γ5γμ—polarized, and
Γ ¼ σμν—transversity) and may be taken parallel or
perpendicular to the WL to avoid finite mixing (for certain
lattice discretizations) with other operators [36]. To account
for the finite momentum used in lattice QCD simulations,
higher-twist corrections and target mass corrections need to
be applied. For large nucleon momenta, quasi-PDFs can be
matched to physical PDFs using the Large Momentum
Effective Theory (LMET) [13,37].
Lattice QCD evaluation.—One of the important steps in

extracting PDFs is to use simulations with up and down
quarks having physical mass. For our calculation we use an
ensemble of two degenerate light quarks ðNf ¼ 2Þ with
quark masses that are tuned to reproduce approximately the
physical pion mass value [38]. The values of parameters of
the ensemble are given in Table I. The gauge configurations
have been generated with the Iwasaki improved gluon
action [39,40] and the twisted mass fermion action (at
maximal twist) with clover improvement [41,42].
A crucial step for the applicability of the method is to

boost the nucleon to large enough momentum, so one
can carry out the matching within perturbation theory.
However, the noise-to-signal ratio increases rapidly as the
momentum is increased, demanding a corresponding
increase in computational effort in order to reach a
satisfactory statistical accuracy. One uses momentum
smearing to reduce the noise. There are additional factors
that contribute to the increase of gauge noise, such as
simulating at the physical pion mass, as well as how large
the Euclidean time separation needs to be from the time of
creating a state with the quantum numbers of the nucleon to
annihilating it. We refer to the Euclidean time separation as
source-sink separation Tsink, and this needs to be large
enough to sufficiently suppress excited states. We inves-
tigate when ground state dominance sets in by employing
three values of Tsink, namely, 0.75, 0.93, and 1.12 fm. We
find that the results for Tsink ¼ 0.93 fm are in agreement

TABLE I. Simulation parameters of the ensemble used in this
Letter. The nucleon mass ðmNÞ, the pion mass ðmπÞ, and the
lattice spacing (a) have been determined in Ref. [43]. L is the
spatial length of the lattice, β is related to the bare coupling
constant, and cSW is the clover parameter.

β ¼ 2.10 cSW ¼ 1.57751 a ¼ 0.0938ð3Þð2Þ fm
483 × 96 aμ ¼ 0.0009 mN ¼ 0.932ð4Þ GeV
L ¼ 4.5 fm mπ ¼ 0.1304ð4Þ GeV mπL ¼ 2.98ð1Þ
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Introduction.—A key ingredient of our understanding
of fundamental particle interactions in the standard model is
the ab initio evaluation of quantum chromodynamics
(QCD) as our theory of the strong interaction between
quarks and gluons. A sound and detailed knowledge of
the theoretical predictions from QCD will shed light on
the early and the present universe and can address open
questions in nuclear and particle physics, such as the
emergence of protons and other hadrons from the under-
lying microscopic system of quarks and gluons. In addition,
such QCD predictions can provide hints for physics beyond
the standard model through precision calculations of
appropriate hadronic matrix elements.
Experimentally, a detailed insight into the most inner

structure of hadrons is provided by deep inelastic scattering
(DIS), which constitutes a most powerful approach to
probe the properties of individual quarks and gluons, such
as their momentum, spin, and angular momentum. On
the theoretical side, parton distribution functions (PDFs),

introduced in the 1960s, can be extracted from such DIS
experiments through phenomenological analyses. In this
way, detailed information about the distribution of, e.g.,
momentum and spin of quarks and gluons inside hadrons
can be obtained. More concretely, within the parton model,
unpolarized PDFs describe the probability densities of
finding a parton with a longitudinal momentum fraction
x (0 ≤ x ≤ 1) of the total momentum of the parent hadron.
In fact, a rich experimental program at major facilities,
e.g., Brookhaven National Laboratory, CERN, Deutsches
Elektronen-Synchrotron, Fermilab, JLab, and SLAC, has
provided a wealth of measurements with a corresponding
worldwide theoretical effort to interpret the results. In
addition, PDFs serve as an essential and indispensable
input for collider experiments, such as the LHC.
However, PDFs are still not precisely determined, since

one needs a rather large number of different processes and
targets and a sophisticated setup for polarized beams and
targets for the case of polarized PDFs. In general, one resorts
to fits of experimental data aided by phenomenologically
motivated Ansäätze (see, e.g., Ref. [1]). In addition, knowl-
edge of PDFs only from phenomenological fits cannot be
considered as a direct and ab initio QCD prediction, as the
analysis procedure is not unique [2]. Finally, there are also
limitations in accessing the very small x region [3–5].
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We extract parton distribution functions (PDFs) of the nucleon from lattice QCD using an ensemble of
gauge field configurations simulated with light quark masses fixed to their physical values. Theoretical and
algorithmic improvements that allow such a calculation include momentum smearing to reach large
nucleon boosts with reduced statistical errors, nonperturbative renormalization, target mass corrections,
and a novel modified matching of lattice QCD results to connect to what is extracted from experimental
measurements. We give results on the unpolarized and helicity PDFs in the modified minimal subtraction
scheme at a scale of 2 GeV and reproduce the main features of the experimentally determined quantities,
showing an overlap for a range of Bjorken-x values. This first direct nonperturbative evaluation opens a
most promising path to compute PDFs in an ab initio way on the lattice and provides a framework for
investigating also a wider class of similar quantities, which require the evaluation of hadronic matrix
elements of nonlocal operators.
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Introduction.—A key ingredient of our understanding
of fundamental particle interactions in the standard model is
the ab initio evaluation of quantum chromodynamics
(QCD) as our theory of the strong interaction between
quarks and gluons. A sound and detailed knowledge of
the theoretical predictions from QCD will shed light on
the early and the present universe and can address open
questions in nuclear and particle physics, such as the
emergence of protons and other hadrons from the under-
lying microscopic system of quarks and gluons. In addition,
such QCD predictions can provide hints for physics beyond
the standard model through precision calculations of
appropriate hadronic matrix elements.
Experimentally, a detailed insight into the most inner

structure of hadrons is provided by deep inelastic scattering
(DIS), which constitutes a most powerful approach to
probe the properties of individual quarks and gluons, such
as their momentum, spin, and angular momentum. On
the theoretical side, parton distribution functions (PDFs),

introduced in the 1960s, can be extracted from such DIS
experiments through phenomenological analyses. In this
way, detailed information about the distribution of, e.g.,
momentum and spin of quarks and gluons inside hadrons
can be obtained. More concretely, within the parton model,
unpolarized PDFs describe the probability densities of
finding a parton with a longitudinal momentum fraction
x (0 ≤ x ≤ 1) of the total momentum of the parent hadron.
In fact, a rich experimental program at major facilities,
e.g., Brookhaven National Laboratory, CERN, Deutsches
Elektronen-Synchrotron, Fermilab, JLab, and SLAC, has
provided a wealth of measurements with a corresponding
worldwide theoretical effort to interpret the results. In
addition, PDFs serve as an essential and indispensable
input for collider experiments, such as the LHC.
However, PDFs are still not precisely determined, since

one needs a rather large number of different processes and
targets and a sophisticated setup for polarized beams and
targets for the case of polarized PDFs. In general, one resorts
to fits of experimental data aided by phenomenologically
motivated Ansäätze (see, e.g., Ref. [1]). In addition, knowl-
edge of PDFs only from phenomenological fits cannot be
considered as a direct and ab initio QCD prediction, as the
analysis procedure is not unique [2]. Finally, there are also
limitations in accessing the very small x region [3–5].
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On the other hand, PDFs are universal and process-
independent quantities and are inherently of a nonperturba-
tive nature. Hence, they would be, in principle, a very
suitable target for lattice QCD (LQCD) calculations, since
LQCD provides a well-defined theoretical framework for
computing hadronic matrix elements using directly the QCD
Lagrangian. Indeed, there have been very remarkable recent
successes of LQCD, such as the precise measurement of the
low-lying hadron spectrum including the mass splitting
between proton and neutron [6] and the decomposition of
the proton spin [7]. However, an LQCD computation of the
full x dependence of PDFs related to bilocal operators on the
light cone was thought to be impossible for a very long time.
Only the lowest moments of PDFs were until recently
computed (see, e.g., [8–12]), since these are related to
matrix elements of local operators. But, having only very
few lowest moments available is clearly insufficient to
reconstruct PDFs in a model-independent manner.
In the seminal work by X. Ji [13], a new promising

approach [14] to compute PDFswithin LQCDwas proposed.
However, applicability of this approach requires the valida-
tion of and control on a number of nontrivial steps, which
are to reach large enough nucleon boosts, nonperturbative
renormalization, target mass corrections, and a suitable
matching. In this Letter, we implement Ji’s approach and
examine for the first time all these steps and successfully
determine the unpolarized and polarized PDFs of the proton
within LQCD using an ensemble of gauge field configura-
tions simulatedwith light quarks of physical masses, which is
essential for reliable results for these quantities.
Ji’s approach to access PDFs proceeds via the computa-

tion of spatial correlation functions between two boosted
nucleon states, using nonlocal fermionic operators connected
with a finite-length Wilson line (WL). Taking the Fourier
transform of these matrix elements, it leads to the so-called
quasi-PDFs. For large nucleon momenta, contact with light-
cone PDFs is reestablished via a matching procedure
[19–23]. This approach has been explored in LQCD with
promising first results [24–27]. Many aspects of extracting
light-cone PDFs from quasi-PDFs have improved recently.
These include investigations of renormalizability [28,29],
development of a renormalization scheme for lattice WL
operators [30], refining the matching procedure [21–23], and
target mass corrections [26], which settled initial reservations
on the reliability of the quasi-PDF approach. Other related
approaches were also proposed and tested [31–35].
Quasi-PDFs.—The Minkowski definition of PDFs

within a hadron can be derived from the operator product
expansion of hadronic DIS and is light-cone dominated,
which makes it impossible to evaluate on a Euclidean
lattice. Quasi-PDFs, on the other hand, can be computed in
LQCD. They are given by

q̃ðx;Λ; PÞ ¼
Z

þ∞

−∞

dz
4π

e−ixP3zhΓðP; zÞ; ð1Þ

where hΓðP; zÞ ¼ hPjψ̄ð0; zÞΓWðzÞψð0; 0ÞjPi, Λ ∼ 1=a is
a UV cutoff, jPi is the proton state with finite momentum
P, whose spatial components are nonzero only in the
direction of the WL [P ¼ ðP0; 0; 0; P3Þ]. z is the length
of the WL between quark fields [WðzÞ], which is taken
in a purely spatial direction instead of the þ direction
on the light cone. The Dirac structure Γ defines the type
of PDF (Γ ¼ γμ—unpolarized, Γ ¼ γ5γμ—polarized, and
Γ ¼ σμν—transversity) and may be taken parallel or
perpendicular to the WL to avoid finite mixing (for certain
lattice discretizations) with other operators [36]. To account
for the finite momentum used in lattice QCD simulations,
higher-twist corrections and target mass corrections need to
be applied. For large nucleon momenta, quasi-PDFs can be
matched to physical PDFs using the Large Momentum
Effective Theory (LMET) [13,37].
Lattice QCD evaluation.—One of the important steps in

extracting PDFs is to use simulations with up and down
quarks having physical mass. For our calculation we use an
ensemble of two degenerate light quarks ðNf ¼ 2Þ with
quark masses that are tuned to reproduce approximately the
physical pion mass value [38]. The values of parameters of
the ensemble are given in Table I. The gauge configurations
have been generated with the Iwasaki improved gluon
action [39,40] and the twisted mass fermion action (at
maximal twist) with clover improvement [41,42].
A crucial step for the applicability of the method is to

boost the nucleon to large enough momentum, so one
can carry out the matching within perturbation theory.
However, the noise-to-signal ratio increases rapidly as the
momentum is increased, demanding a corresponding
increase in computational effort in order to reach a
satisfactory statistical accuracy. One uses momentum
smearing to reduce the noise. There are additional factors
that contribute to the increase of gauge noise, such as
simulating at the physical pion mass, as well as how large
the Euclidean time separation needs to be from the time of
creating a state with the quantum numbers of the nucleon to
annihilating it. We refer to the Euclidean time separation as
source-sink separation Tsink, and this needs to be large
enough to sufficiently suppress excited states. We inves-
tigate when ground state dominance sets in by employing
three values of Tsink, namely, 0.75, 0.93, and 1.12 fm. We
find that the results for Tsink ¼ 0.93 fm are in agreement

TABLE I. Simulation parameters of the ensemble used in this
Letter. The nucleon mass ðmNÞ, the pion mass ðmπÞ, and the
lattice spacing (a) have been determined in Ref. [43]. L is the
spatial length of the lattice, β is related to the bare coupling
constant, and cSW is the clover parameter.

β ¼ 2.10 cSW ¼ 1.57751 a ¼ 0.0938ð3Þð2Þ fm
483 × 96 aμ ¼ 0.0009 mN ¼ 0.932ð4Þ GeV
L ¼ 4.5 fm mπ ¼ 0.1304ð4Þ GeV mπL ¼ 2.98ð1Þ
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A general procedure for obtaining frame-independent, three-dimensional light-front coordinate-
space wave functions is introduced. The third spatial coordinate, z̃ , is the conjugate to the light-

front momentum coordinate x = k+

P+ which appears in parton distributions. These light-front wave
functions are used to derive a general expression for the quark distribution function of hadrons as
an integral over the spatial separation s = z̃ � z̃0, the frame-independent longitudinal distance (the
Io↵e time) between virtual-photon absorption and emission in the forward virtual photon-hadron
Compton scattering amplitude. Specific examples using models derived from light-front holographic
QCD show that the spatial extent of a proton in the longitudinal direction exhibits a very large
extent in z̃. This means that very large values of s occur at small x, a key feature of the Io↵e time.

Introduction

Much recent e↵ort has been devoted to under-
standing and measuring the generalized parton dis-
tributions [1–3] which encode the fundamental struc-
ture of hadrons in terms of the three-dimensional
momentum-space coordinates of their quark and
gluon constituents. Recent lattice calculations of
quasi-pdfs evaluate a Fourier transform of a matrix
element which depends on the spatial separation s

of the distance between virtual-photon absorption
and emission that appears in the virtual photon-
proton Compton scattering amplitude It is there-
fore of considerable interest to understand the spa-
tial longitudinal dependence of the virtual Compton
amplitude from a causal, frame-independent perspec-
tive. In this paper we shall show that the frame-
independent eigensolutions of the QCD light-front
Hamiltonian which underly hadronic observables can
be expressed in terms of a longitudinal spatial coor-
dinate z̃ that is simply related to s. One thus obtains
a frame-independent three-dimensional description of
hadron structure which complements analyses using
the usual transverse spatial variables [4–7].

The Light-Front Fock Representation

The light-front expansion of any hadronic system
is constructed by quantizing quantum chromodynam-
ics at fixed light-front time ⌧ = t + z/c [8–12]. The
LF time-evolution operator P

� = i
d
d⌧ can be de-

rived directly from the QCD Lagrangian. The light-
front Lorentz-invariant Hamiltonian for the compos-
ite hadrons H

QCD
LF = P

�
P

+ � P2 has eigenvalues

M2
h, corresponding to the mass spectrum of the

color-singlet states in QCD [10]. (Here P
± = P

0±P
z

and boldface notation is used to denote the two-
dimensional transverse vectors.)

In principle, the complete set of bound-state
and scattering eigensolutions of H

QCD
LF can be ob-

tained by solving the light-front Heisenberg equation
H

QCD
LF | hi = M2

h | hi ,where | hi is an expan-
sion in multi-particle Fock eigenstates { |ni} of the
free light-front Hamiltonian: | hi =

P
n  n/h| hi.

The light-front wavefunctions  n/h(xi,ki,�i) provide
a complete, causal, frame independent representation
of a hadrons, relating the quark and gluon degrees of
freedom in each n-particle Fock state to the hadronic
eigenstate.
Twist-two operators and the need for a longitudinal

spatial coordinate

The quark distributions of a hadron are matrix
elements of quark operators at light-like separa-
tion [13, 14]:

Fq(X) = 1
2

R
dx�

2⇡ e
iXP+x�hP | +(�x�

2 )�+ +(x�

2 )|P i,
(1)

where the notation (x�
/2) refers to the four vector

(x�
/2, x

+ = 0,x = 0); the LF helicity and flavor la-
bels, as well as the Q

2-dependence, are suppressed.
The operator �0�+ that appears in the matrix ele-
ment in A

+ = 0 gauge serves to project [9] the de-
pendent field operator  onto its independent compo-
nent  +. The variable X is used instead of the usual
x, because X ranges between �1 and 1. The appli-

Recent lattice calculations compute the matrix element,
then Fourier transform to get distributions

Insert complete set of states   between the field operators
matrix elements are light-front wave functions

qn(x) =
R

d2k
(2⇡)2 | n(x,k)|2
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cation of the Fourier expansion [15] to  + and  
†
+

shows that the quark contributions have a momen-
tum fraction k

+
/P

+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.

?

1

?

1

x�
FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one
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sion in multi-particle Fock eigenstates { |ni} of the
free light-front Hamiltonian: | hi =

P
n  n/h| hi.

The light-front wavefunctions  n/h(xi,ki,�i) provide
a complete, causal, frame independent representation
of a hadrons, relating the quark and gluon degrees of
freedom in each n-particle Fock state to the hadronic
eigenstate.
Twist-two operators and the need for a longitudinal

spatial coordinate

The quark distributions of a hadron are matrix
elements of quark operators at light-like separa-
tion [13, 14]:

Fq(X) = 1
2

R
dx�

2⇡ e
iXP+x�hP | +(�x�

2 )�+ +(x�

2 )|P i,
(1)

where the notation (x�
/2) refers to the four vector

(x�
/2, x

+ = 0,x = 0); the LF helicity and flavor la-
bels, as well as the Q

2-dependence, are suppressed.
The operator �0�+ that appears in the matrix ele-
ment in A

+ = 0 gauge serves to project [9] the de-
pendent field operator  onto its independent compo-
nent  +. The variable X is used instead of the usual
x, because X ranges between �1 and 1. The appli-

Recent lattice calculations compute the matrix element,
then Fourier transform to get distributions

Insert complete set of states   between the field operators
matrix elements are light-front wave functions

qn(x) =
R

d2k
(2⇡)2 | n(x,k)|2
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cation of the Fourier expansion [15] to  + and  
†
+

shows that the quark contributions have a momen-
tum fraction k

+
/P

+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.

?

1

?

1

x�
FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one
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FIG. 1. Forward virtual Compton scattering.

that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2

Next question why z̃ instead of x−?
x− is frame dependent
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2

Another choice uses :x−
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =

022201-2
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that

q(x) = 21/2
∫

dx−

4π
eixP+x−

×
∑

n

〈P|ψ†
+

(
−x−

2

)
|n − 1〉〈n − 1|ψ+

(
x−

2

)
|P〉.

(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that
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+
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(
x−

2

)
|P〉.
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ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+
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P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
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2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =
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that appears in the matrix element in the A+ = 0 gauge
serves to project [9] the field operator ψ onto its independent
component ψ+ so that field operators and their adjoints ap-
pear. The variable x ranges between 0 and 1.

The expression for q(x) is the leading-twist approximation
to the virtual photon forward-scattering amplitude shown in
Fig. 1. Our focus, here, is the distance along the light cone
between the emission and absorption of the virtual photon,
shown by the thick line. This is needed for a complete under-
standing of the three-dimensional spatial dependence of the
quark distributions.

The matrix element appearing in Eq. (2) is directly relevant
to several techniques that seek to obtain quark distributions as
functions of x, e.g., Refs. [17–20]. See the extensive reviews
[21,22]. These techniques represent significant advances over
efforts based on computing moments of distributions. Lattice
theorists compute the lattice version of the matrix element
appearing in Eq. (2), for example, Ref. [18] as hγ + (P, x−), and
then take a Fourier transform in order to obtain the quasi-pdfs.
Therefore, it is useful to obtain physical intuition regarding the
matrix element appearing in Eq. (2). This will be performed
here by employing recent models derived from holographic
light-front QCD.

Of course, we are not the first to study the variable x−.
It has commonly been called the Ioffe time [23–25]. This
quantity is known to be large if x is small. The study of the
matrix element appearing in Eq. (2) as the Fourier transform of
quark probability distributions was initiated in Refs. [26,27].
Our procedure elucidates the dependence on x− that appears
in Eq. (2) as derived from light-front wave functions in
coordinate space, and it is, thus, not the same as the procedure
of Refs. [26,27].

We study hadronic light-front wave functions as a function
of the longitudinal spatial coordinate of the quark and gluon
constituents. The appearance of wave functions arises by
inserting a complete set of states |n − 1〉 in Eq. (2) so that
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(2)

The quantity 〈n − 1|ψ ( x−

2 )|P〉 is an overlap of amplitudes
which projects out the active struck quark integrated over the
spectator particles. This is simply the light-front Fock-space
wave function of a quark (or antiquark). In the momentum-
space representation of the standard light-front Fock-space de-
scription [10–12], one has for the quark wave-functions 〈n −

1|ψ+(x, k, λ)|P〉 ≡ ψn(x, k, λ)2−1/4 in which the indices that
refer to specific states have been suppressed to simplify the
presentation. The contribution of this component (qn) q(x) of
Eq. (2) is given by

qn(x) =
∫

d2k
(2π )2

|ψn(x, k)|2. (3)

For quarks |ψn(x, k, λ)|2 ∝ |〈n − 1|b(k+, k, λ)|P〉|2, where
b(k+, k, λ) is the destruction operator, and, for antiquarks,
|ψn(x, k, λ)|2 ∝ |〈n − 1|d (k+, k, λ)|P〉|2 [28,29].

Converting these momentum-space wave functions to co-
ordinate space is the next step. The transverse momentum
coordinate k is transformed into the canonically conjugate
impact parameter b to obtain ψn(x, b) using standard meth-
ods [4–7]. The dependence of ψn on the frame-independent
longitudinal spatial coordinate has not previously appeared.

The frame-independent longitudinal space coordinate z̃.
The momentum-space wave functions are normally expressed
in terms of the light-front momentum coordinates k+

i
P+ and ki of

the ith constituent. These coordinates are internal momentum
coordinates, independent of the hadron’s momentum Pµ and
the choice of the observer’s Lorentz frame. As a result, their
Fourier transforms, the canonically conjugate internal spatial
coordinates bi, and z̃i, given by the variable,

z̃i = P+x−
i (4)

are also independent of the frame of the hadron. Our z̃i seems
similar to the variable z of Ref. [26], but its origin and meaning
are different. The canonical spatial coordinate occurs for each
of the constituents of a Fock-space component of a hadronic
wave function. In the following, we use z̃ instead of z̃i to
simplify the notation. See also Refs. [30,31].

Making a standard Fourier transform yields the coordinate
space wave function given by

ψn(z̃, b) = 1√
2π

∫ 1

0
dx ψn(x, b)eiz̃x, (5)

or the mixed form

ψn(z̃, k) = 1√
2π

∫ 1

0
dx ψn(x, k)eiz̃x. (6)

These LF wave functions are matrix elements of field op-
erators between Fock-space components [12] using standard
light-front coordinates.

It is worthwhile to compare the present approach with the
concept that the longitudinal direction is Lorentz contracted
to zero in the infinite momentum frame. Contraction occurs if
one identifies the longitudinal coordinate as x−, the coordinate
canonically conjugate to the momentum variable k+. This
leads to a frame-dependent coordinate-space wave function
from the relation:

χ+
P (x−, b) =

√
P+

2π

∫ 1

0
dx ψn(x, b)eix−P+x. (7)

The resulting density ρP+ (x−, b) = |χP+ (x−, b)|2 in the in-
finite momentum frame is obtained by taking P+ to
∞. Taking the limit carefully [32] yields ρ(x−, b) =
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Quark distributions and z̃
qn(x) =

R
d2k
(2⇡)2 | n(x,k)|2
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∫
dx|ψn(x, b)|2δ(x−), a result that corresponds to a pic-

ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
z̃ = P+x−.

Quark distribution functions and z̃. The frame-independent
quark distribution function qn(x) of Eq. (3) can be expressed
in terms of the longitudinal coordinate z̃ using the inverse
Fourier transform of Eq. (6) so that

qn(x) =
∫

dz̃ dz̃′

2π

∫
d2k

(2π )2
ψ∗

n (z̃′, k)ψn(z̃, k)ei(z̃−z̃′ )x. (8)

Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
y = y′ so that the quark distribution qn(y) appears. Then, use
the real-valued nature of qn(x) of Eq. (8) to obtain

qn(x) =
∫ ∞

−∞
d (%z̃)gn(%z̃, x), (9)

with

gn(%z̃, x) = 1
2π

∫ 1

0
dy qn(y) cos %z̃(y − x). (10)

The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π

κ
√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front

FIG. 2. The density ρS
M (z̃, b) values of κb = 0, 1, 3. Values of

ρS
M (z̃, b) fall as κb increases.

coordinate-space density,

ρM (z̃, b) ≡
∣∣ψS

M (z̃, b)
∣∣2

. (13)

The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
1 − p+

2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
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Quark distribution functions and z̃. The frame-independent
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Fourier transform of Eq. (6) so that
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the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
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the real-valued nature of qn(x) of Eq. (8) to obtain
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with
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∫ 1
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The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by
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The momentum-space version of Eq. (11) is obtained from
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quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
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To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+
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ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
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trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
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Models to further our understanding of g(%z̃, x). The
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Hamiltonian [36] is given by
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Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
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The coordinate-space wave function is obtained by us-
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canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
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2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
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shows that the quark contributions have a momen-
tum fraction k
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/P

+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.
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FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one

Δz̃
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∫
dx|ψn(x, b)|2δ(x−), a result that corresponds to a pic-

ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
z̃ = P+x−.

Quark distribution functions and z̃. The frame-independent
quark distribution function qn(x) of Eq. (3) can be expressed
in terms of the longitudinal coordinate z̃ using the inverse
Fourier transform of Eq. (6) so that

qn(x) =
∫

dz̃ dz̃′

2π

∫
d2k

(2π )2
ψ∗

n (z̃′, k)ψn(z̃, k)ei(z̃−z̃′ )x. (8)

Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
y = y′ so that the quark distribution qn(y) appears. Then, use
the real-valued nature of qn(x) of Eq. (8) to obtain

qn(x) =
∫ ∞

−∞
d (%z̃)gn(%z̃, x), (9)

with

gn(%z̃, x) = 1
2π

∫ 1

0
dy qn(y) cos %z̃(y − x). (10)

The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π

κ
√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front

FIG. 2. The density ρS
M (z̃, b) values of κb = 0, 1, 3. Values of

ρS
M (z̃, b) fall as κb increases.

coordinate-space density,

ρM (z̃, b) ≡
∣∣ψS

M (z̃, b)
∣∣2

. (13)

The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
1 − p+

2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
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Quark distribution functions and z̃. The frame-independent
quark distribution function qn(x) of Eq. (3) can be expressed
in terms of the longitudinal coordinate z̃ using the inverse
Fourier transform of Eq. (6) so that
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Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
y = y′ so that the quark distribution qn(y) appears. Then, use
the real-valued nature of qn(x) of Eq. (8) to obtain
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with
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∫ 1
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The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π
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√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
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κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front
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The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
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2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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FIG. 4. ρ(z̃, b). The numbers refer to the value of b in units of
GeV−1.

An interesting feature is that, for each value of κb, the density
vanishes at values of z̃ ≈ 7.6.

We may gain understanding of this vanishing by obtaining
an approximate closed form expression for ψS

M (z̃, b). Use
Eq. (11) in Eq. (5). Then, change variables to u = x − 1/2.
Then,

ψS
M (z̃, b) = 2κ√

2π
e−b2κ2/8eiz̃/2

×
∫ 1/2

0
du

√
1/4 − u2eb2κ2u2/2 cos z̃u, (14)

so that a term eiz̃/2 e−b2κ2/8 factors out of the integral. One may
expand the eb2κ2u2/2 in powers of b2u2to get a sum of closed-
form expressions. The most important term is the one obtained
by replacing the exponential by unity, so that

π√
2κ

ψS
M (z̃, b) ≈ π

4
eiz̃/2e−b2κ2/8 J1(z̃/2)

z̃
, (15)

which is reasonably accurate for z̃ > b2κ2. In that case, the
oscillations cause cancellations of higher-order terms in b2u2.
The first zero of J1(x) occurs at x = 3.8171 so that one obtains
a qualitative understanding of the zero crossing at z̃ ≈ 7.6
shown in Fig. 2. The result Eq. (15) means that, for z̃ > b2κ2,
the density falls only as 1/z̃3, approximately modulated by
cos2(z̃ + π/4). The existence of such a long-distance tail
indicates that using the z̃ variable has the potential to reveal
interesting aspects of hadronic physics.

Next, we determine the function gn(%z̃, x) for the model of
Eq. (11). Use Eq. (10) with qn(y) = 1 as given above to find

gM (%z̃, x) = 1
2π

sin(%z̃x) + sin[%z̃(1 − x)]
%z̃

. (16)

Observe the slow 1/%z̃ falloff for all values of x.
Similarly, a slow falloff is also obtained for models with

massive quarks. In the limit of large quark masses, defined by
γ ≡ m2

q/κ
2 > 1, we find that

gM (%z̃, x) ≈
e−4γ e−(%z̃2/64γ ) cos

[
%z̃

(
x − 1

2

)]

8
√

π
√

γ
. (17)

Universal light-front wave functions. The model given in
Eq. (11) is very simple with qn(x) = 1 for mq = 0. A recent
paper [38] presents a universal description of generalized par-
ton distributions obtained from light-front holographic QCD,
and we will use its models. These are presented as functions
of the number τ of constituents of a Fock-space component.
Regge behavior at small x and inclusive counting rules as
x → 1 are incorporated. Nucleon and pion valence quark
distribution functions are obtained in precise agreement with
global fits. The model is defined by the quark distribution
qτ (x) and the profile function f (x) with

qτ (x) = 1
Nτ

[1 − w(x)]τ−2w(x)−(1/2)w′(x), (18)

f (x) = 1
4λ

[
(1 − x) ln

(
1
x

)
+ a(1 − x)2

]
, (19)

and w(x) = x1−xe−a(1−x)2
.

The value of the universal scale λ is fixed from the ρ
mass:

√
λ = κ = mρ/

√
2 = 0.548 GeV [37,39]. The flavor-

independent parameter a = 0.531 ± 0.037. The u and d quark
distributions of the proton are given by a linear superposition
of q3 and q4 whereas those of the pion are obtained from q2
and q4.

Given these distributions, we may study the function
g(%z̃, x) of as a function of τ using Eq. (10) with qτ

replacing qn.
Figure 3 shows g(%z̃, 0) as a function of %z̃, the dimen-

sionless separation between the emission and the absorption
of the photon r of Fig. 1. In the laboratory frame, the proton
radius corresponds to about %z̃ = 3. One observes a slow
falloff with increasing %z̃: gτ (%z̃) ≈ 1√

%z̃
for all values of τ .

This qualitative behavior can be understood analytically. The
function qτ (x) ≈ 1/

√
x for small values of x and (1 − x)2τ−3.

A useful approximation for qτ (x) is given by the product of the
two forms. In that case, one may consider, e.g., an important
contribution to g(r, x),G(%z̃, x) with

G(%z̃, x) ≡
∫ 1

0

dy
√

y
(1 − y)3 cos %z̃(y − x) ∼

√
2π (%z̃)3/2 sin(x) +

√
2π (%z̃)3/2 cos(x) + 3 cos(x − %z̃)

2(%z̃)2 , (20)

which, for all values of x, demonstrates %z̃−1/2 falloff, modu-
lated by oscillatory behavior. An essential feature is that there
is a significant probability that the deep inelastic-scattering

process occurs at large separations between the absorption
and the emission of the virtual photon. This means that the
traditional idea that long longitudinal distances (the Ioffe
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nate x− is frame dependent. Instead, a boost-invariant
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The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
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x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
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x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
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The momentum-space version of Eq. (11) is obtained from
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mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-
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and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.

022201-3

Slow fall off with large z̃, ρM ∼
1
z̃3

wave functions 3 spatial dimensions
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Models to understand g(s̃, x)

I. Pseudoscalar meson, massless quarks, qq̄ LF holographic model

 M (x,b) = p
⇡

p
x(1� x)e�

b22x(1�x)
2

Take  M square it, integrate over b to get qM (y). Use result to get gM

gM (s̃, x) = 1
2⇡

sin(s̃x)+sin(s̃(1�x))
s̃ .

Very long tail in s̃ for x near 0 or 1
<latexit sha1_base64="SuYySSEkuQ9Susr1BbFxBtuaYYU="></latexit>

gM(Δz̃, x) =
1

2π ( sin Δz̃(1 − x) + sin Δz̃x
Δz̃ )

Very long tail
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  transverse dist between quark and cmb

2

cation of the Fourier expansion [15] to  + and  
†
+

shows that the quark contributions have a momen-
tum fraction k

+
/P

+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.

?

1

?

1

x�
FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one

Δz̃

(Δz̃, x)

Simple wf, no Regge behavior
Absorption-emission distance

can be large 

In lab frame, if Δz̃ = 16, Δx− ≈ 5 fm
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Intermediate summary

• Using the frame-independent variable  gives a way to study light front wave 
functions in three dimensions

• Simplest two particle wave function has  a large spatial longitudinal extent 

• Deep inelastic scattering may occur at large values of  

• Will such effects occur in your model?

•  need to have more realistic wave function

z̃

Δz̃

qM(x) = 1!
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+

shows that the quark contributions have a momen-
tum fraction k

+
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+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.

?
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?
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x�
FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one
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GPD Model incorporates Regge behavior small x, inclusive counting rules high x
precise descriptions of nucleon and pion q(x)
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The structure of generalized parton distributions is determined from light-front holographic QCD
up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and
inclusive counting rules at x ! 1. A simple ansatz for w(x) which fulfills these physics constraints
with a single-parameter results in precise descriptions of both the nucleon and the pion quark
distribution functions in comparison with global fits. The analytic structure of the amplitudes leads
to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory
and the hadron spectrum.

INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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⌧ = 2, 3, 4= number of constituents in Fock-space wavefunction
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GPD Hτ(x, t) = qτ(x)etf(x)

GERALD A. MILLER AND STANLEY J. BRODSKY PHYSICAL REVIEW C 102, 022201(R) (2020)

FIG. 4. ρ(z̃, b). The numbers refer to the value of b in units of
GeV−1.

An interesting feature is that, for each value of κb, the density
vanishes at values of z̃ ≈ 7.6.

We may gain understanding of this vanishing by obtaining
an approximate closed form expression for ψS

M (z̃, b). Use
Eq. (11) in Eq. (5). Then, change variables to u = x − 1/2.
Then,

ψS
M (z̃, b) = 2κ√

2π
e−b2κ2/8eiz̃/2

×
∫ 1/2

0
du

√
1/4 − u2eb2κ2u2/2 cos z̃u, (14)

so that a term eiz̃/2 e−b2κ2/8 factors out of the integral. One may
expand the eb2κ2u2/2 in powers of b2u2to get a sum of closed-
form expressions. The most important term is the one obtained
by replacing the exponential by unity, so that

π√
2κ

ψS
M (z̃, b) ≈ π

4
eiz̃/2e−b2κ2/8 J1(z̃/2)

z̃
, (15)

which is reasonably accurate for z̃ > b2κ2. In that case, the
oscillations cause cancellations of higher-order terms in b2u2.
The first zero of J1(x) occurs at x = 3.8171 so that one obtains
a qualitative understanding of the zero crossing at z̃ ≈ 7.6
shown in Fig. 2. The result Eq. (15) means that, for z̃ > b2κ2,
the density falls only as 1/z̃3, approximately modulated by
cos2(z̃ + π/4). The existence of such a long-distance tail
indicates that using the z̃ variable has the potential to reveal
interesting aspects of hadronic physics.

Next, we determine the function gn(%z̃, x) for the model of
Eq. (11). Use Eq. (10) with qn(y) = 1 as given above to find

gM (%z̃, x) = 1
2π

sin(%z̃x) + sin[%z̃(1 − x)]
%z̃

. (16)

Observe the slow 1/%z̃ falloff for all values of x.
Similarly, a slow falloff is also obtained for models with

massive quarks. In the limit of large quark masses, defined by
γ ≡ m2

q/κ
2 > 1, we find that

gM (%z̃, x) ≈
e−4γ e−(%z̃2/64γ ) cos

[
%z̃

(
x − 1

2

)]

8
√

π
√

γ
. (17)

Universal light-front wave functions. The model given in
Eq. (11) is very simple with qn(x) = 1 for mq = 0. A recent
paper [38] presents a universal description of generalized par-
ton distributions obtained from light-front holographic QCD,
and we will use its models. These are presented as functions
of the number τ of constituents of a Fock-space component.
Regge behavior at small x and inclusive counting rules as
x → 1 are incorporated. Nucleon and pion valence quark
distribution functions are obtained in precise agreement with
global fits. The model is defined by the quark distribution
qτ (x) and the profile function f (x) with

qτ (x) = 1
Nτ

[1 − w(x)]τ−2w(x)−(1/2)w′(x), (18)

f (x) = 1
4λ

[
(1 − x) ln

(
1
x

)
+ a(1 − x)2

]
, (19)

and w(x) = x1−xe−a(1−x)2
.

The value of the universal scale λ is fixed from the ρ
mass:

√
λ = κ = mρ/

√
2 = 0.548 GeV [37,39]. The flavor-

independent parameter a = 0.531 ± 0.037. The u and d quark
distributions of the proton are given by a linear superposition
of q3 and q4 whereas those of the pion are obtained from q2
and q4.

Given these distributions, we may study the function
g(%z̃, x) of as a function of τ using Eq. (10) with qτ

replacing qn.
Figure 3 shows g(%z̃, 0) as a function of %z̃, the dimen-

sionless separation between the emission and the absorption
of the photon r of Fig. 1. In the laboratory frame, the proton
radius corresponds to about %z̃ = 3. One observes a slow
falloff with increasing %z̃: gτ (%z̃) ≈ 1√

%z̃
for all values of τ .

This qualitative behavior can be understood analytically. The
function qτ (x) ≈ 1/

√
x for small values of x and (1 − x)2τ−3.

A useful approximation for qτ (x) is given by the product of the
two forms. In that case, one may consider, e.g., an important
contribution to g(r, x),G(%z̃, x) with

G(%z̃, x) ≡
∫ 1

0

dy
√

y
(1 − y)3 cos %z̃(y − x) ∼

√
2π (%z̃)3/2 sin(x) +

√
2π (%z̃)3/2 cos(x) + 3 cos(x − %z̃)

2(%z̃)2 , (20)

which, for all values of x, demonstrates %z̃−1/2 falloff, modu-
lated by oscillatory behavior. An essential feature is that there
is a significant probability that the deep inelastic-scattering

process occurs at large separations between the absorption
and the emission of the virtual photon. This means that the
traditional idea that long longitudinal distances (the Ioffe
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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The structure of generalized parton distributions is determined from light-front holographic QCD
up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and
inclusive counting rules at x ! 1. A simple ansatz for w(x) which fulfills these physics constraints
with a single-parameter results in precise descriptions of both the nucleon and the pion quark
distribution functions in comparison with global fits. The analytic structure of the amplitudes leads
to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory
and the hadron spectrum.

INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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⌧ = 2, 3, 4= number of constituents in Fock-space wavefunction
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∫
dx|ψn(x, b)|2δ(x−), a result that corresponds to a pic-

ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
z̃ = P+x−.

Quark distribution functions and z̃. The frame-independent
quark distribution function qn(x) of Eq. (3) can be expressed
in terms of the longitudinal coordinate z̃ using the inverse
Fourier transform of Eq. (6) so that

qn(x) =
∫

dz̃ dz̃′

2π

∫
d2k

(2π )2
ψ∗

n (z̃′, k)ψn(z̃, k)ei(z̃−z̃′ )x. (8)

Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
y = y′ so that the quark distribution qn(y) appears. Then, use
the real-valued nature of qn(x) of Eq. (8) to obtain

qn(x) =
∫ ∞

−∞
d (%z̃)gn(%z̃, x), (9)

with

gn(%z̃, x) = 1
2π

∫ 1

0
dy qn(y) cos %z̃(y − x). (10)

The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π

κ
√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front

FIG. 2. The density ρS
M (z̃, b) values of κb = 0, 1, 3. Values of

ρS
M (z̃, b) fall as κb increases.

coordinate-space density,

ρM (z̃, b) ≡
∣∣ψS

M (z̃, b)
∣∣2

. (13)

The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
1 − p+

2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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shows explicitly how large longitudinal distances z̃

are associated with small values of x.

Ref. [31] also presents the universal light front wave
function (LFWF):

 
⌧
e↵(x,b) =

1

2
p
⇡

s
q⌧ (x)

f(x)
(1�x) exp


� (1 � x)2

8f(x)
b2

�
,

(18)
in the transverse impact space representation with
q⌧ (x) and f(x) given by (16) and (17). The de-
pendence on z̃, is contained in the wave function
 ⌧ (z̃, b), computed according to Eq. (5). The den-
sity ⇢(z̃, b) = | ⌧e↵(z̃,b)|2 is shown in Fig. 4.
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FIG. 4. ⇢(z̃, b). The numbers refer to the value of b in
units of GeV�1.
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FIG. 5. z̃1.6⇢(z̃, 0). The numbers refer to the value of ⌧ ,
the number of constituents in the Fock state.

The main interest here is to study the dependence
on z̃, which is displayed in Fig. 5 for b = 0. The
same general behavior is seen for other values of b.
The density falls roughly as 1/z̃

1.6. This very slow
fallo↵ that again indicates the importance of the
longitudinal spatial variable for small values of x.

We examine how the transverse extent de-
pends on z̃ by defining an expectation value

b
2
⌧ (z̃) ⌘

R
d2b| ⌧ (z̃,b)|2b2R
d2b| ⌧ (z̃,b)|2 . The values shown in Fig. 6

generally increase with increasing z̃, in contrast with
intuition based on rotational invariance.
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FIG. 6. b2⌧ (z̃) in units of GeV�2. The numbers refer to
the value of ⌧ , the number of constituents in the Fock
state.

The unorthodox behavior shown in Fig. 6 mo-
tivates us to define the average value of b2 as a
function of x: b

2(x) ⌘
R

d
2
bb

2 | e↵ (x,b)|2 = 4f
(1�x)2 ,

is independent of the value of ⌧ and ranges from
about 1.1 fm2 at x = 0 to 0.23 fm2 at x = 1.
This behavior arises from the vanishing of f(x)
as x approaches 1. Indeed limx!1 f(x) GeV2 =
1.27454(1� x)2 + 0.416245(1� x)3 + · · · . The mean-
square transverse size decreases with increasing x.
Similarly, the mean-square transverse momentum
k
2(x) = 1/b

2(x) increases with increasing x. This
behavior is completely opposite to that obtained
from the simpler form of Eq. (11), as well as that of
many models of GPDs.

Summary and Outlook

A longitudinal spatial variable z̃ has been intro-
duced in Eq. (4), thus allowing a representation
of light-front wave functions in terms of all three
frame-independent spatial variables. The square
of light-front wave functions falls very slowly with
increasing values of z̃. This behavior, seen in both
the valence model of Eq. (11) and in the model that
incorporates Regge behavior Eq. (18), shows that
the di↵erence between two values of z̃ (Eq. (9)),
i.e. the distance s between absorption and emission
of deeply inelastic virtual photons, can be very
large. The result Eq. (10) demonstrates that the
explicit factor cos sx controls the relation of the
distance s to the Io↵e time. All of this is relates
to the light-front wave functions. Furthermore, the
function g(s, x) appearing in that equation serves as

Light-front wave function2

⌧ = 2, 3, 4= number of constituents in Fock-space wavefunction
<latexit sha1_base64="AvauKwr5RAzKwL2IXxJ9mogOZTs="></latexit>

γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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FIG. 5. z̃1.6ρ(z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state.

time) [24,26] underlies deep inelastic scattering at small xb j
is related to specific features of hadronic light-front wave
functions.

Reference [38] also presents the universal LF wave func-
tion,

ψτ
eff (x, b) = 1

2
√

π

√
qτ (x)
f (x)

(1 − x) exp
[
− (1 − x)2

8 f (x)
b2

]
,

(21)
in the transverse impact space representation. The dependence
on z̃ is contained in the wave-function ψτ (z̃, b), computed
according to Eq. (5). The density ρ(z̃, b) = |ψτ

eff (z̃, b)|2 is
shown in Fig. 4.

The main interest, here, is to study the dependence on z̃,
which is displayed in Fig. 5 for b = 0. The same general
behavior is seen for other values of b. The density falls roughly
as 1/z̃1.6. This very slow falloff again indicates the large
spatial extent of hadronic wave functions.

We examine how the transverse extent depends on z̃ by
defining an expectation value b2

τ (z̃) ≡
∫

d2b|ψτ (z̃,b)|2b2
∫

d2b|ψτ (z̃,b)|2 . The val-
ues shown in Fig. 6 generally increase with increasing z̃, in
contrast with intuition based on rotational invariance.

The reader will note that the results for the case of τ = 2
shown in Figs. 3, 5, and 6 exhibit significant oscillations
at large values of z̃. The oscillations in z̃ for large values
of z̃ are due to contributions of values of x near unity in
the integrand of Eq. (5). The function

√
q2(x)/ f (x)(1 − x) ≈√

1 − x for values of x near 1 and its Fourier transform
≈ i/z̃ + ei(z̃+π/4)/ζ 3/2√π/2 which oscillates for large val-
ues of z̃. However, the function 1 − w(x), [recall Eq. (19)]
which appears only for τ = 3, 4, approaches 1.531(1 − x)2

for values of x near unity. This suppresses the integrand of
the Fourier transform in the critical region. The oscillating
term eiz̃ has a coefficient of 1/z̃5/2 for τ = 3 and 1/z̃7/2 for
τ = 4. The suppression is largest for τ = 4, and some weaker
oscillations persist for τ = 3.

The unexpected rising b2
τ (z̃) behavior shown in Fig. 6

is a feature of its definition, given above, in terms of
a ratio. The numerator rises with increasing values of z̃

FIG. 6. b2
τ (z̃) in units of GeV−2. The numbers refer to the value

of τ and the number of constituents in the Fock state. The dashed
curve is for τ = 3. The smoothest curve is for τ = 4.

faster than the denominator. Another interesting quantity
is the average value of b2 as a function of x: b2(x) ≡∫

d2b b2|ψeff (x, b)|2/
∫

d2b|ψeff (x, b)|2 = 4 f
(1−x)2 . This quan-

tity is independent of the value of τ and ranges from about
1.1 fm2 at x = 0 to 0.23 fm2 at x = 1. This decreasing behav-
ior arises from the vanishing of f (x) as x approaches 1. In-
deed, limx→1 f (x) GeV2 = 1.27454(1 − x)2 + 0.416245(1 −
x)3 + · · · . The mean-square transverse size decreases with in-
creasing x. Similarly, the mean-square transverse momentum,

k2(x) ≡
∫

d2k k2|ψeff (x, k)|2
/ ∫

d2k|ψeff (x, k)|2

= (1 − x)2/(4 f )

= 1/b2(x) (22)

increases with increasing x. This behavior, a specific feature
of the model of Ref. [38], is completely opposite from that
obtained from the simpler form of Eq. (11) as well as that of
many models of GPDs.

Summary and outlook. A longitudinal spatial variable z̃ has
been introduced in Eq. (4), thus, allowing a representation
of light-front wave functions in terms of all three frame-
independent spatial coordinate variables. Both the valence
model of Eq. (11) and the universal light-front model which
incorporates Regge behavior Eq. (21) provide a light-front
coordinate-space density Eq. (13), that has a long tail in the
longitudinal separation between the struck constituent and
the spectators. This allows the absorption-emission separa-
tion distance x− occurring in deep inelastic scattering to be
very long. The result Eq. (10) shows how given regions
of x− contribute to the quark distribution at each value of
Bjorken x.
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∫
dx|ψn(x, b)|2δ(x−), a result that corresponds to a pic-

ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
z̃ = P+x−.

Quark distribution functions and z̃. The frame-independent
quark distribution function qn(x) of Eq. (3) can be expressed
in terms of the longitudinal coordinate z̃ using the inverse
Fourier transform of Eq. (6) so that

qn(x) =
∫

dz̃ dz̃′

2π

∫
d2k

(2π )2
ψ∗

n (z̃′, k)ψn(z̃, k)ei(z̃−z̃′ )x. (8)

Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
y = y′ so that the quark distribution qn(y) appears. Then, use
the real-valued nature of qn(x) of Eq. (8) to obtain

qn(x) =
∫ ∞

−∞
d (%z̃)gn(%z̃, x), (9)

with

gn(%z̃, x) = 1
2π

∫ 1

0
dy qn(y) cos %z̃(y − x). (10)

The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π

κ
√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front

FIG. 2. The density ρS
M (z̃, b) values of κb = 0, 1, 3. Values of

ρS
M (z̃, b) fall as κb increases.

coordinate-space density,

ρM (z̃, b) ≡
∣∣ψS

M (z̃, b)
∣∣2

. (13)

The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
1 − p+

2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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The structure of generalized parton distributions is determined from light-front holographic QCD
up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and
inclusive counting rules at x ! 1. A simple ansatz for w(x) which fulfills these physics constraints
with a single-parameter results in precise descriptions of both the nucleon and the pion quark
distribution functions in comparison with global fits. The analytic structure of the amplitudes leads
to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory
and the hadron spectrum.

INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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2

cation of the Fourier expansion [15] to  + and  
†
+

shows that the quark contributions have a momen-
tum fraction k

+
/P

+ ⌘ x = X, with X � 0, whereas
the anti-quark contributions have a momentum frac-
tion x = k

+
/P+ = �X for X  0.

?

1

?

1

x�
FIG. 1. Forward virtual Compton scattering.

The expression, Fq(X) is the leading-twist approx-
imation to the virtual photon forward scattering am-
plitude shown in Fig. 1, and x

� is the distance along
the light cone between the emission and absorption of
the virtual photon. We shall show that the complete
interpretation of the spatial dependence of the quark
distributions requires an understanding of their con-
tributions to Fq(X) as a function of the longitudinal
spatial separation x

�.
The matrix element appearing in Eq. (1) is directly

relevant to several techniques that seek to obtain
quark distributions as functions of x, e. g. Refs.[16–
19]. See the extensive reviews [20, 21]. These
techniques represent significant advances over e↵orts
based on computing moments of distributions. Lat-
tice theorists compute the lattice version of the ma-
trix element appearing in Eq. (1), for example, [17],
as h�+(P, x

�), and then take a Fourier transform in
order to obtain the quasi-pdfs as a function of X and
P. Therefore it is useful to obtain physical intuition
regarding the matrix element appearing in Eq. (1).
This will be done here by employing recent models
derived from holographic light- front QCD.

A key advance will be to show that the necessary
understanding is gained by studying hadronic light-
front wave functions as a function of the longitudi-
nal spatial coordinate of the quark and gluon con-
stituents. To see this, we insert a complete set of
states |n � 1i in Eq. (1) so that

Fq(X) = 1p
2

R
dx�

2⇡ e
iXP+x� ⇥

P
nhP | †

+(�x�

2 )|n � 1ihn � 1| +(x�

2 )|P i. (2)

The quantity hn� 1| (x�

2 )|P i is an overlap of am-
plitudes which projects out the active, struck quark,
integrated over the spectator particles. This is simply
the light front Fock space wave function of a quark
(or anti-quark). In the momentum space representa-
tion of the standard Fock space description [10–12],

one has hn� 1| +(x,k,�)|P i ⌘  n(x,k,�), in which
the indices that refer to specific states have been sup-
pressed to simplify the presentation. The contribu-
tion of this component (qn) to the previously defined
Fq(X) is given by

qn(x) =

Z
d
2
k

(2⇡)2
| n(x,k)|2 , (3)

where X = x if the quark is removed from
|ni and X = �x if the anti-quark is removed.
A sum over � is assumed. For quarks
| n(x,k,�))|2 / |hn � 1|b(k+

,k,�)|P i|2, where
b(k+

,k,�) is the destruction operator and for anti-
quarks | n(x,k,�))|2 / �|hn � 1|d(k+

,k,�)|P i|2,
[22, 23].

Converting these momentum-space wave functions
to coordinate space is the next step. The trans-
verse momentum coordinate k is transformed into the
canonically conjugate impact parameter b to obtain
 n(x,b) using standard methods [4–7]. The depen-
dence on the frame-independent longitudinal spatial
coordinate has not previously appeared.
The frame-independent longitudinal space coordi-

nate z̃

The momentum space wave functions are normally
expressed in terms of the longitudinal light-front mo-
mentum coordinate k+

P+ . The canonical spatial co-
ordinate is therefore given by the frame-independent
variable

z̃ = P
+
x
�

. (4)

See also [24, 25].
Making a standard Fourier transform yields the co-

ordinate space wave function given by

 n(z̃,b) =
1p
2⇡

Z 1

0
dx n(x,b)eiz̃x

, (5)

or the mixed form

 n(z̃,k) =
1p
2⇡

Z 1

0
dx n(x,k)eiz̃x

. (6)

These light-front (LF) wave functions are indepen-
dent of the observer’s Lorentz frame since both the
longitudinal and transverse coordinates are canon-
ically conjugate to relative LF momentum coordi-
nates.

It is worthwhile to compare the present approach
with the concept that the longitudinal direction is
Lorentz-contracted to zero in the infinite momentum
frame. The appearance of contraction occurs if one
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ture in which generalized parton distribution functions
(GPDs) are represented as disks [33]. See also Ref. [34].
There is one caveat: The contraction occurs only for ma-
trix elements of the independent quark-field operators in-
volving the so-called “good” operator γ +. The coordi-
nate x− is frame dependent. Instead, a boost-invariant
distribution is obtained using the longitudinal coordinate
z̃ = P+x−.
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quark distribution function qn(x) of Eq. (3) can be expressed
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Let Z̃ ≡ (z̃ + z̃′)/2, %z̃ = z̃ − z̃′ and use Eq. (6) to express
the wave functions in terms of integrals of standard momen-
tum fractions (y, y′) and integrate over Z̃ . The result sets
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the real-valued nature of qn(x) of Eq. (8) to obtain

qn(x) =
∫ ∞

−∞
d (%z̃)gn(%z̃, x), (9)

with

gn(%z̃, x) = 1
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0
dy qn(y) cos %z̃(y − x). (10)

The function gn(%z̃, x) is a measure of the contribution
to quark (antiquark) distribution functions that occur at a
particular value of %z̃. In contrast with the distributions of
Ref. [26], this quantity is real valued. The variables %z̃, x
are canonically related. Therefore, observe that gn(%z̃, x)
is a relativistic version of the distribution that Wigner [35]
introduced a long time ago.

Models to further our understanding of g(%z̃, x). The
first model considered is that of a pseudoscalar meson with
massless quarks and one valence qq Fock-space component;
the LF holographic model for the massless pion in the chiral
mq = 0 limit. The eigenfunction of the holographic light-front
Hamiltonian [36] is given by

ψM (x, b) = κ√
π

√
x(1 − x)e−[b2κ2x(1−x)]/2. (11)

The transverse variable [36] ζ 2 = b2x(1 − x) is canonically
conjugate to k2

x(1−x) , and the wave functions are simplified if
this variable is used. Here, we take another path by exhibiting
the separate dependence of z̃ and transverse coordinates.

The momentum-space version of Eq. (11) is obtained from
the Fourier transform to the canonically conjugate k so that

ψM (x, k) = 2
√

π

κ
√

x(1 − x)
e−{k2/[2κ2x(1−x)]}. (12)

Using Eq. (3), one finds that the parton distribution is constant
for this model qM (x) = 1. For mq '= 0, one [37] models the

mass dependence so that qM (x) = exp (− m2
q

κ2x(1−x) ).
The coordinate-space wave function is obtained by us-

ing Eq. (11) in Eq. (5). It is useful to define a light-front

FIG. 2. The density ρS
M (z̃, b) values of κb = 0, 1, 3. Values of

ρS
M (z̃, b) fall as κb increases.

coordinate-space density,

ρM (z̃, b) ≡
∣∣ψS

M (z̃, b)
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. (13)

The variable b is the transverse distance between the struck
quark and the transverse center of momentum [5]. The
coordinate z̃ is the dimensionless longitudinal spatial variable
canonically conjugate to the momentum variable k+/P+ = x.
To explain, consider a quark (1)-spectator S system. The
total (+) momentum is P+ = p+

1 + p+
S . The value of the

canonical spatial variable X − = (x−
1 + x−

S )/2 is undetermined
because the states we consider have a definite value of P+.
However, the difference x− ≡ (x−

1 − x−
S ) is canonically con-

jugate to (p+
1 − p+

2 )/2, and x−
1,2 = X − ± x−/2. Thus, x− is

the difference between the longitudinal positions of the quark
and the spectator, and z̃ = x−P+ is the dimensionless frame-
independent version of x−.

Obtaining ρM (z̃, b) provides a new way of examining
hadronic wave functions. This is shown for mq = 0 in Fig. 2.

FIG. 3. gτ (%z̃, 0). The numbers refer to the value of τ , the
number of constituents in the Fock state. (a) 0 ! %z̃ ! 10, and
(b) 10 ! %z̃ ! 200.
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W (z) between quark fields, which is taken in a purely
spatial direction instead of the +-direction on the light
cone. The Dirac structure � defines the type of PDF
(�=�µ – unpolarized, �=�5�µ – polarized and �=�µ⌫ –
transversity) and may be taken parallel or perpendicu-
lar to the WL to avoid finite mixing (for certain lattice
discretizations) with other operators [25]. To account for
the finite momentum used in lattice QCD simulations,
higher twist corrections and TMCs need to be applied.
For large nucleon momenta, quasi-PDFs can be matched
to physical PDFs using Large Momentum E↵ective The-
ory (LaMET) [8, 26].
Lattice QCD evaluation: The results presented in this
work are obtained with a gauge ensemble of two degen-
erate light quarks (Nf=2) at maximal twist, with quark
masses that are tuned to reproduce approximately the
physical pion mass value [27]. The parameter values of
the ensemble are given in Table I . The gauge configu-
rations have been generated with the Iwasaki improved
gluon action [28, 29] and the twisted mass fermion action
with clover improvement [30, 31].

�=2.10, cSW=1.57751, a=0.0938(3)(2) fm

483 ⇥ 96 aµ = 0.0009 mN = 0.932(4) GeV

L = 4.5 fm m⇡ = 0.1304(4) GeV m⇡L = 2.98(1)

TABLE I: Simulation parameters of the ensemble used in this
work. The nucleon mass (mN ), the pion mass (m⇡) and the
lattice spacing (a) have been determined in Ref. [32].

High nucleon momenta are required for carrying out
the matching within perturbation theory. However, the
noise-to-signal ratio increases rapidly as the momentum
is increased, demanding a huge computational e↵ort for
reaching a satisfactory statistical accuracy. There are ad-
ditional factors that contribute to the increase of gauge
noise, such as using the physical pion mass and large
enough propagation in Euclidean time to suppress ex-
cited states.

In this study, we compute quasi-PDFs for three val-
ues of the momentum, namely 6⇡

L , 8⇡
L and 10⇡

L , which in
physical units correspond to 0.83, 1.11, 1.38 GeV. We im-
plement the momentum smearing technique [33], which
is necessary to achieve high momentum at a reasonable
computational cost [17]. The total number of measure-
ments for momenta 6⇡

L , 8⇡
L , 10⇡

L is 4800-9600, 38250,
58950, respectively. Going to even larger momentum, al-
though desirable, requires huge computational resources.

In the computation of MEs, we apply up to 20 itera-
tions of stout smearing [34] to gauge links of the operator.
This reduces the power divergence in the ME of non-local
bilinear operators connected with a WL and brings renor-
malization functions (Z-factors) closer to their tree level
value. After carrying out the power divergence subtrac-
tion, renormalized MEs extracted from di↵erent stout
levels must be in agreement. This provides a check of
the renormalization process.

As mentioned above, one can extract the unpolarized
PDF from an operator with a Dirac structure parallel
(�3) or perpendicular to the WL (�0). The former has
the disadvantage of mixing with the twist-3 scalar oper-
ator [25]. However, for twisted mass fermions the vector
mixes with the pseudoscalar operator, which vanishes in
the continuum limit. As a consequence, h�3 has increased
noise contamination compared to h�0 . We compute MEs
of both operators, and here we focus on h�0 presented in
Fig. 1 for the three momenta values momenta used. Sim-
ilarly, in Fig. 2, we show results for bare helicity MEs.
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FIG. 1: Comparison of unpolarized bare MEs (h�0) for mo-
menta 6⇡

L (blue circles), 8⇡
L (red diamonds) and 10⇡

L (green
stars) using 5 stout steps.
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FIG. 2: Similar to Fig.1 for helicity bare MEs.

It is evident that the signal quality rapidly worsens for
larger momenta, and an increase in statistics by a factor
four to six is used for momenta 8⇡

L and 10⇡
L as compared

to 6⇡
L , to keep statistical uncertainties under control. As

can be seen from Figs. 1-2, results for the two largest
momentum values are overlapping for both the real and
imaginary parts within our statistical errors.
Renormalization: To obtain physical results, lattice MEs
of non-conserved currents must be renormalized to elimi-
nate divergences. Compared to other nucleon quantities,
quasi-PDFs have an additional WL-related power diver-
gence. Based on the renormalization and mixing pattern
from Ref. [25], we developed a non-perturbative prescrip-
tion [19], also implemented for another lattice formula-
tion [35]. This procedure removes the power divergence
and the logarithmic divergence with respect to the reg-
ulator, and applies the necessary finite renormalization
related to the lattice regularization. For our choices of
the Dirac structure for the unpolarized and the polarized
cases, there is no mixing.
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We extract parton distribution functions (PDFs) of the nucleon from lattice QCD using an ensemble of
gauge field configurations simulated with light quark masses fixed to their physical values. Theoretical and
algorithmic improvements that allow such a calculation include momentum smearing to reach large
nucleon boosts with reduced statistical errors, nonperturbative renormalization, target mass corrections,
and a novel modified matching of lattice QCD results to connect to what is extracted from experimental
measurements. We give results on the unpolarized and helicity PDFs in the modified minimal subtraction
scheme at a scale of 2 GeV and reproduce the main features of the experimentally determined quantities,
showing an overlap for a range of Bjorken-x values. This first direct nonperturbative evaluation opens a
most promising path to compute PDFs in an ab initio way on the lattice and provides a framework for
investigating also a wider class of similar quantities, which require the evaluation of hadronic matrix
elements of nonlocal operators.
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Introduction.—A key ingredient of our understanding
of fundamental particle interactions in the standard model is
the ab initio evaluation of quantum chromodynamics
(QCD) as our theory of the strong interaction between
quarks and gluons. A sound and detailed knowledge of
the theoretical predictions from QCD will shed light on
the early and the present universe and can address open
questions in nuclear and particle physics, such as the
emergence of protons and other hadrons from the under-
lying microscopic system of quarks and gluons. In addition,
such QCD predictions can provide hints for physics beyond
the standard model through precision calculations of
appropriate hadronic matrix elements.
Experimentally, a detailed insight into the most inner

structure of hadrons is provided by deep inelastic scattering
(DIS), which constitutes a most powerful approach to
probe the properties of individual quarks and gluons, such
as their momentum, spin, and angular momentum. On
the theoretical side, parton distribution functions (PDFs),

introduced in the 1960s, can be extracted from such DIS
experiments through phenomenological analyses. In this
way, detailed information about the distribution of, e.g.,
momentum and spin of quarks and gluons inside hadrons
can be obtained. More concretely, within the parton model,
unpolarized PDFs describe the probability densities of
finding a parton with a longitudinal momentum fraction
x (0 ≤ x ≤ 1) of the total momentum of the parent hadron.
In fact, a rich experimental program at major facilities,
e.g., Brookhaven National Laboratory, CERN, Deutsches
Elektronen-Synchrotron, Fermilab, JLab, and SLAC, has
provided a wealth of measurements with a corresponding
worldwide theoretical effort to interpret the results. In
addition, PDFs serve as an essential and indispensable
input for collider experiments, such as the LHC.
However, PDFs are still not precisely determined, since

one needs a rather large number of different processes and
targets and a sophisticated setup for polarized beams and
targets for the case of polarized PDFs. In general, one resorts
to fits of experimental data aided by phenomenologically
motivated Ansäätze (see, e.g., Ref. [1]). In addition, knowl-
edge of PDFs only from phenomenological fits cannot be
considered as a direct and ab initio QCD prediction, as the
analysis procedure is not unique [2]. Finally, there are also
limitations in accessing the very small x region [3–5].
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The structure of generalized parton distributions is determined from light-front holographic QCD
up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and
inclusive counting rules at x ! 1. A simple ansatz for w(x) which fulfills these physics constraints
with a single-parameter results in precise descriptions of both the nucleon and the pion quark
distribution functions in comparison with global fits. The analytic structure of the amplitudes leads
to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory
and the hadron spectrum.

INTRODUCTION

Generalized parton distributions (GPDs) [1–3] have
emerged as a comprehensive tool to describe the nucleon
structure as probed in hard scattering processes. GPDs
link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provide
the angular momentum contribution of the nucleon con-
stituents to its total spin through Ji’s sum rule [2]. The
GPDs also encode information of the three-dimensional
spatial structure of the hadrons: The Fourier transform
of the GPDs gives the transverse spatial distribution of
partons in correlation with their longitudinal momentum
fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments
in the LHC era, considerable e↵orts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7],
and HERAPDF [8]. Lattice QCD calculations are us-
ing di↵erent methods, such as path-integral formulation
of the deep-inelastic scattering hadronic tensor [9–11],
inversion method [12, 13], quasi-PDFs [14–18], pseudo-
PDFs [19, 20] and lattice cross-sections [21] to obtain the
x-dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of par-
ton distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron struc-
ture based on the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This e↵ective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
which are not apparent from the QCD Lagrangian, such
as the emergence of a mass scale � = 

2, a unique form

of the confinement potential, a zero mass state in the chi-
ral limit: the pion, and universal Regge trajectories for
mesons and baryons.

Various models of parton distributions based on
LFHQCD [30–51] use as a starting point the analytic
form of GPDs found in Ref. [52]. This simple ana-
lytic form incorporates the correct high-energy count-
ing rules of FFs [53, 54] and the GPD’s t-momentum
transfer dependence. One can also obtain e↵ective light-
front wave functions (LFWFs) [28, 55] which are rele-
vant for the computation of FFs and PDFs, including
polarization dependent distributions [43, 44, 47]. LFWFs
are also used to study the skewness ⇠-dependence of the
GPDs [41, 45, 48, 50, 51], and other parton distributions
such as the Wigner distribution functions [38, 43]. The
downside of the above phenomenological extensions of
the holographic model is the large number of parameters
required to describe simultaneously PDFs and FFs for
each flavor.

Motivated by our recent analysis of the nucleon FFs
in LFHQCD [56], we extend here our previous results
for GPDs and LFWFs [52, 55]. Shifting the FF poles to
their physical location [56] does not modify the exclusive
counting rules but modifies the slope and intercept of the
Regge trajectory, and hence the analytic structure of the
GPDs which incorporates the Regge behavior. As a re-
sult, the x-dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present con-
text up to a universal reparametrization function; there-
fore, imposing further physically motivated constraints is
necessary.

GPDs IN LFHQCD

In LFHQCD the FF for arbitrary twist-⌧ is expressed in
terms of Gamma functions [28, 52], an expression which
can be recast in terms of the Euler Beta function B(u, v)
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⌧ = 2, 3, 4= number of constituents in Fock-space wavefunction
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Different than in paperb2(z̃) ≡ ∫ d2b b2 |ψ(z̃, b) |2
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τ = 2

τ = 3
New feature -long tail
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Summary
• Frame-independent longitudinal spatial variable, canonically conjugate to x 

introduced

• Square of wave functions have long tail in

• Distance between absorption and emission of virtual photons in DIS can be 
very large, especially so at small x

• The function g( , x) may serve as a bridge between light front wave 
functions and lattice QCD calculations of GPDs

• What is the  dependence of your wave functions? 

Δz̃

z̃

z̃
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z̃ = x�P+
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