Discussion for EIC EOI : 3D imaging of the Nucleon at the EIC

Hyon-Suk Jo Kyungpook National University

Korea EIC Meeting

2020.09.14

Generalized parton distributions (GPDs)

In this model, valence quarks are at the heart of the nucleon and sea quarks extend to its periphery

Interpretation of GPDs : impact parameter as a function of x

Deeply Virtual Compton Scattering (DVCS) and GPDs

high Q^2 , small t, fixed x_B

DVCS is the key reaction to access the GPDs → simplest interpretation in terms of GPDs At leading-order QCD, leading twist, there are 4 chiral-even (parton helicity is conserved) GPDs for each parton

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x \in t)$	$\widetilde{E}^{q,g}(x \in t)$	for difference over
$\Pi (\omega, \zeta, v)$	$E^{(w, \zeta, v)}$	parton helicities
nucleon helicity conserved	nucleon helicity changed	

DVCS and Bethe-Heitler processes

BH fully calculable in QED

DVCS Bethe-Heitler GPDs **σ(eN→eNγ) =** DVCS and Bethe-Heitler (BH) experimentally undistinguishable interference between the 2 processes $T^{DVCS} \sim \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi+i\varepsilon} dx + \dots \sim P \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$ **Unpolarized Cross Section** $\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} \approx \left| T^{DVCS} + T^{BH} \right|^2 = \left| T^{DVCS} \right|^2 + \left| T^{BH} \right|^2 + I$ $\frac{d^{4} \overrightarrow{\sigma}}{dQ^{2} dx_{B} dt d\phi} - \frac{d^{4} \overleftarrow{\sigma}}{dQ^{2} dx_{R} dt d\phi} \propto \operatorname{Im}(T_{DVCS}) \times T_{BH}$ Beam-polarized Cross-Section difference

Proton spin crisis : The origin of the proton spin is still unknown

$$\frac{1}{2} = J^{q} + J^{g} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{z}$$

GPDs H and E provide access to the total angular momentum of the partons in the nucleon

Ji's angular momentum sum rule :

$$J^{q,g} = \frac{1}{2} \int_{-1}^{1} x dx [H^{q,g}(x,\xi,t=0) + E^{q,g}(x,\xi,t=0)]$$

Extracting GPDs from DVCS observables

Compton
Form Factors
(CFFs)
$$Re\mathcal{H}_{q} = e_{q}^{2} P_{0}^{+1} (\mathcal{H}^{q}(x,\xi,t) - \mathcal{H}^{q}(-x,\xi,t)) \begin{bmatrix} \frac{1}{\xi-x} + \frac{1}{\xi+x} \end{bmatrix} dx$$

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} [\mathcal{H}^{q}(\xi,\xi,t) - \mathcal{H}^{q}(-\xi,\xi,t)]$$

$$\xi = x_{B}/(2-x_{B}) \quad k = t/4M^{2}$$

$$e_{P} \longrightarrow e_{P}\gamma$$
Each DVCS observable is sensitive to a different combination of GPDs
• Polarized beam, Unpolarized target

$$\Delta\sigma_{LU} \sim \sin\phi \operatorname{Im}\{F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - kF_{2}\mathcal{E}\} d\phi$$
• Unpolarized beam, Longitudinally polarized target

$$\Delta\sigma_{UL} \sim \sin\phi \operatorname{Im}\{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}} + ...\} d\phi$$
• Unpolarized beam, Transversely polarized target

$$\Delta\sigma_{UL} \sim \cos\phi \operatorname{Im}\{k(F_{2}\mathcal{H} - F_{1}\mathcal{E}) +\} d\phi$$
• Polarized beam, Longitudinally polarized target

$$\Delta\sigma_{LL} \sim (A+Bcos\phi) \operatorname{Re}\{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) ...\} d\phi$$

$$Im\{\mathcal{H}_{p}, \mathcal{H}_{p}\}$$

DVCS experiments

Kinematic coverage of the different experiments

Jefferson Lab 6 GeV and the CLAS detector

Jefferson Lab

Unpolarized and beam-polarized cross sections from CLAS data

Interpretation of fit results obtained from the cross sections

DVCS on longitudinally polarized target

Extraction of H_{Im} from the fits of JLab 6 GeV data

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

From CFFs to proton tomography

Longitudinal momentum fraction x

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

Jefferson Lab upgrade to 12 GeV

Jefferson Lab 12 GeV and the new CLAS12 detector

Jefferson Lab

Data taking with the new CLAS12 detector started in 2018

JLab 12 GeV : new CLAS12 detector in Hall B

Design luminosity $L \sim 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

Acceptance for charged particles:

- Central (CD), 40°<θ<135°
- Forward (FD), 5°<θ<40°

Acceptance for photons:

- Forward tagger, 2°<θ<5°
- EC, 5°<θ<40°

High luminosity & large acceptance: Concurrent measurement of deeply virtual exclusive, semi-inclusive, and inclusive processes

DVCS experiments also in Hall A and Hall C of Jefferson Lab

Proton tomography with CLAS12 projected data

DVCS at the Electron-Ion Collider (EIC)

Nucleon tomography of the gluons and sea quarks (low momentum fraction)

The Electron-Ion Collider (EIC) will be constructed at BNL

eRHIC design (BNL)

DVCS at the EIC : gluons and sea quarks

- Collision of polarized electrons with polarized protons, light and heavy nuclei
- High Luminosity : $L_{ep} \ge 10^{33-34} \text{ cm}^{-2} \text{ s}^{-1}$ (100-1000 times HERA)
- Variable center-of-mass energy : 20-100(140) GeV

3D imaging of the Nucleon at the EIC

